• Chinese Journal of Quantum Electronics
  • Vol. 34, Issue 6, 705 (2017)
Qing LI* and Zhiming ZHANG
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2017.06.009 Cite this Article
    LI Qing, ZHANG Zhiming. Steady-state mechanical modes squeezing via cubic nonlinearity in ring-cavity optomechanical system[J]. Chinese Journal of Quantum Electronics, 2017, 34(6): 705 Copy Citation Text show less
    References

    [1] Zhu K D, Li W S. Electromagnetically induced transparency mediated by phonons in strongly coupled exciton-phonon systems[J]. Appl. Phys. B, 2002, 75(8): 861-864.

    [2] Agarwal G S, Huang S. Electromagnetically induced transparency in mechanical effects of light[J]. Phys. Rev. A, 2010, 81(4): 041803.

    [3] Weis S, Riviere R, Deleglise S, et al. Optomechanically induced transparency[J]. Science, 2010, 330(6010): 1520-1523.

    [4] Xiao Y, Yu Y F, Zhang Z M. Controllable optomechanically induced transparency and ponderomotive squeezing in an optomechanical system assisted by an atomic ensemble[J]. Opt. Expr., 2014, 22(15): 17979-17989.

    [5] Marquardt F, Chen J P, Clerk A A, et al. Quantum theory of cavity-assisted sideband cooling of mechanical motion[J]. Phys. Rev. Lett., 2007, 99(9): 093902.

    [6] Wilson-Rae I, Nooshi N, Dobrindt J, et al. Cavity-assisted backaction cooling of mechanical resonators[J]. New J. Phys., 2008, 10(9): 095007.

    [7] Mazzola L, Paternostro M. Distributing fully optomechanical quantum correlations[J]. Phys. Rev. A, 2011, 83(6): 062335.

    [8] Genes C, Vitali D, Tombesi P. Emergence of atom-light-mirror entanglement inside an optical cavity[J]. Phys. Rev. A, 2008, 77(5): 050307.

    [9] Palomaki T A, Harlow J W, et al. Coherent state transfer between itinerant microwave fields and a mechanical oscillator[J]. Nature, 2013, 495(7440): 210-214.

    [10] Wang Y D, Clerk A A. Using interference for high fidelity quantum state transfer in optomechanics[J]. Phys. Rev. Lett., 2012, 108(15): 153603.

    [11] Alebachew E, Fesseha K. Interaction of a two-level atom with squeezed light[J]. Opt. Commun., 2007, 271(1): 154-161.

    [12] Paternostro M. Engineering nonclassicality in a mechanical system through photon subtraction[J]. Phys. Rev. Lett., 2011, 106(18): 183601.

    [13] Vacanti G, Paternostro M, et al. Nonclassicality of optomechanical devices in experimentally realistic operating regimes[J]. Phys. Rev. A, 2013, 88(1): 013851.

    [14] Li J, Groblacher S, Paternostro M. Enhancing non-classicality in mechanical systems[J]. New J. Phys., 2013, 15(3): 033023.

    [15] Tan H, Bariani F, et al. Generation of macroscopic quantum superpositions of optomechanical oscillators by dissipation[J]. Phys. Rev. A, 2013, 88(2): 023817.

    [16] Brooks D W, Botter T, et al. Non-classical light generated by quantum-noise-driven cavity optomechanics[J]. Nature, 2012, 488(7412): 476-480.

    [17] Safavi-Naeini A H, Groblacher S, et al. Squeezed light from a silicon micromechanical resonator[J]. Nature, 2013, 500(7461): 185-189.

    [18] Verlot P, Tavernarakis A, et al. Backaction amplification and quantum limits in optomechanical measurements[J]. Phys. Rev. Lett., 2010, 104(13): 133602.

    [19] Gavartin E, Verlot P, Kippenberg T J. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements[J]. Nat. Nanotech., 2012, 7(8): 509-514.

    [20] Purdy T P, Yu P L, et al. Strong optomechanical squeezing of light[J]. Phys. Rev. X, 2013, 3(3): 031012.

    [21] Mari A, Eisert J. Gently modulating optomechanical systems[J]. Phys. Rev. Lett., 2009, 103(21): 213603.

    [22] Jahne K, Genes C, et al. Cavity-assisted squeezing of a mechanical oscillator[J]. Phys. Rev. A, 2009, 79(6): 063819.

    [23] Seok H, Buchmann L F, et al. Generation of mechanical squeezing via magnetic dipoles on cantilevers[J]. Phys. Rev. A, 2012, 85(3): 033822.

    [24] Clerk A A, Marquardt F, Jacobs K. Back-action evasion and squeezing of a mechanical resonator using a cavity detector[J]. New J. Phys., 2008, 10(9): 095010.

    [25] Asjad M, Agarwal G S, et al. Robust stationary mechanical squeezing in a kicked quadratic optomechanical system[J]. Phys. Rev. A, 2014, 89(2): 023849.

    [26] Lu X Y, Liao J Q, et al. Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity[J]. Phys. Rev. A, 2015, 91(1): 013834.

    [27] Schliesser A, Arcizet O, et al. Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit[J]. Nature Phys., 2009, 5(7): 509-514.

    [28] Vitali D, Gigan S, et al. Optomechanical entanglement between a movable mirror and a cavity field[J]. Phys. Rev. Lett., 2007, 98(3): 030405.

    [29] Li M, Pernice W H P, Tang H X. Broadband all-photonic transduction of nanocantilevers[J]. Nat. Nanotech., 2009, 4(6): 377-382.

    [30] Rips S, Kiffner M, et al. Steady-state negative Wigner functions of nonlinear nanomechanical oscillators[J]. New J. Phys., 2012, 14(2): 023042.

    [31] Li H, Chen Y, et al. Multichannel cavity optomechanics for all-optical amplification of radio frequency signals[J]. Nat. Commun., 2012, 3: 1091-1096.

    [32] Jacobs K, Landahl A J. Engineering giant nonlinearities in quantum nanosystems[J]. Phys. Rev. Lett., 2009, 103(6): 067201.

    [33] Huang S, Agarwal G S. Entangling nanomechanical oscillators in a ring cavity by feeding squeezed light[J]. New J. Phys., 2009, 11(10): 103044.

    [34] Schulze R J, Genes C, Ritsch H. Optomechanical approach to cooling of small polarizable particles in a strongly pumped ring cavity[J]. Phys. Rev. A, 2010, 81(6): 063820.

    LI Qing, ZHANG Zhiming. Steady-state mechanical modes squeezing via cubic nonlinearity in ring-cavity optomechanical system[J]. Chinese Journal of Quantum Electronics, 2017, 34(6): 705
    Download Citation