• Opto-Electronic Engineering
  • Vol. 47, Issue 11, 200010 (2020)
Hou Yibo, Huo Yiping*, Jiang Xueying, Zhou Chen, Guo Yiyuan, Niu Qiqiang, He Qian, and Hao Xiangxiang
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.12086/oee.2020.200010 Cite this Article
    Hou Yibo, Huo Yiping, Jiang Xueying, Zhou Chen, Guo Yiyuan, Niu Qiqiang, He Qian, Hao Xiangxiang. Generation of multiple Fano resonance and high FOM resonance based on the crescent cross nanostructure[J]. Opto-Electronic Engineering, 2020, 47(11): 200010 Copy Citation Text show less
    References

    [1] Zhang J X, Zhang L D. Nanostructures for surface plasmons[J]. Advances in Optics and Photonics, 2012, 4(2): 157–321.

    [2] Gao W T, Chen C Y, Sun Z J. Local field enhancement and its wavelength tuning in metal nanoparticle arrays[J]. Japanese Journal of Applied Physics, 2019, 58(3): 030910.

    [3] Garcia M A. Surface plasmons in metallic nanoparticles: fun-damentals and applications[J]. Journal of Physics D: Applied Physics, 2011, 44(28): 283001.

    [4] Lodewijks K, Ryken J, Van Roy W, et al. Tuning the fano re-sonance between localized and propagating surface plasmon resonances for refractive index sensing applications[J]. Plas-monics, 2013, 8(3): 1379–1385.

    [5] Newman D M, Wears M L, Matelon R J, et al. Magneto-optic behaviour in the presence of surface plasmons[J]. Journal of Physics Condensed Matter, 2008, 20(34): 345230.

    [6] Liu L, Han Z H, He S L. Novel surface plasmon waveguide for high integration[J]. Optics Express, 2005, 13(17): 6645–6650.

    [7] Dong J, Qu S X, Zheng H R, et al. Simultaneous SEF and SERRS from silver fractal-like nanostructure[J]. Sensors and Actuators B: Chemical, 2014, 191: 595–599.

    [8] Ooi C H R, Tan K S. Controlling double quantum coherence and electromagnetic induced transparency with plasmonic metallic nanoparticle[J]. Plasmonics, 2013, 8(2): 891–898.

    [9] Luk'Yanchuk B, Zheludev N I, Maier S A, et al. The fano reson-ance in plasmonic nanostructures and metamaterials[J]. Nature Materials, 2010, 9(9): 707–715.

    [10] Kobayashi K, Aikawa H, Sano A, et al. Fano resonance in a quantum wire with a side-coupled quantum dot[J]. Physical Re-view B, 2004, 70(3): 035319.

    [11] de Guevara M L L, Claro F, Orellana P A. Ghost fano resonance in a double quantum dot molecule attached to leads[J]. Physical Review B, 2003, 67(19): 195335.

    [12] Hajebifard A, Berini P. Fano resonances in plasmonic heptamer nano-hole arrays[J]. Optics Express, 2017, 25(16): 18566–18580.

    [13] Fang Z Y, Liu Z, Wang Y M, et al. Graphene-antenna sandwich photodetector[J]. Nano Letters, 2012, 12(7): 3808–3813.

    [14] FangZY, Cai J Y,Yan ZB, et al. Removing a wedge from a metallic nanodisk reveals a fano resonance[J]. Nano Letters, 2011, 11(10): 4475–4479.

    [15] Frimmer M, Coenen T, Koenderink A F. Signature of a fano resonance in a plasmonic metamolecule’s local densityof optical states[J]. Physical Review Letters, 2012, 108(7): 077404.

    [16] Chen S, Meng L Y, Hu J W, et al. Fano interference between higher localized and propagating surface plasmon modes in nanovoid arrays[J]. Plasmonics, 2015, 10(1): 71–76.

    [17] Li J, Zhang Y, Jia T Q, et al. High tunability multipolar fano re-sonances in dual-ring/disk cavities[J]. Plasmonics, 2014, 9(6): 1251–1256.

    [18] Kuznetsov M, Haus H. Radiation loss in dielectric waveguide structures by the volume current method[J]. IEEE Journal of Quantum Electronics, 1983, 19(10): 1505–1514.

    [19] Huo Y Y, Jia T Q, Zhang Y, et al. Spaser based on fano reson-ance in a rod and concentric square ring-disk nanostructure[J]. Applied Physics Letters, 2014, 104(11): 113104.

    [20] Zhao Q, Yang Z J, He J. Fano resonances in heterogeneous dimers of silicon and gold nanospheres[J]. Frontiers of Physics, 2018, 13(3): 137801.

    [21] Lee K L,Wu S H,LeeCW, et al. Sensitive biosensors using fano resonance in single gold nanoslit with periodic grooves[J]. Optics Express, 2011, 19(24): 24530–24539.

    [22] Lee E, Zhou K, Gwon M, et al. Surface plasmon-induced ab-sorption enhancement of silicon nanowire array[J]. Proceedings of SPIE, 2012, 8457: 84572C.

    [23] Tasolamprou A C, Zografopoulos D C, Kriezis E E. Liquid crys-tal-based dielectric loaded surface plasmon polariton optical switches[J]. Journal of Applied Physics, 2011, 110(9): 093102.

    [24] Gong X, Tong M H, Xia Y J, et al. High-detectivity polymer pho-todetectors with spectral response from 300 nm to 1450 nm[J]. Science, 2009, 325(5948): 1665–1667.

    [25] Berini P. Surface plasmon photodetectors and their applica-tions[J]. Laser & Photonics Reviews, 2014, 8(2): 197–220.

    [26] BaoYJ,Hu Z J,LiZ W, et al. Magnetic plasmonic fano reson-ance at optical frequency[J]. Small, 2015, 11(18): 2177–2181.

    [27] Bao Y J, Zu S, Zhang Y F, et al. Active control of gra-phene-based unidirectional surface plasmon launcher[J]. ACS Photonics, 2015, 2(8): 1135–1140.

    [28] Bao Y J, Zhu X, Fang Z Y. Plasmonic toroidal dipolar response under radially polarized excitation[J]. Scientific Reports, 2015, 5: 11793.

    [29] Zhang Q, Wen X L, Li G Y, et al. Multiple magnetic mode-based fano resonance in split-ring resonator/disk nanocavities[J]. ACS Nano, 2013, 7(12): 11071–11078.

    [30] Yang L, Wang J C, Yang L Z, et al. Characteristics of multiple fano resonances in waveguide-coupled surface plasmon re-sonance sensors based on waveguide theory[J]. Scientific Re-ports, 2018, 8(1): 2560.

    [31] Kong Y, Cao J J, Qian W C, et al. Multiple fano resonance based optical refractive index sensor composed of micro-cavity and micro-structure[J]. IEEE Photonics Journal, 2018, 10(6): 6804410.

    [32] LiC,LiS L, Wang YL, et al. Multiple fano resonances based on plasmonic resonator system with end-coupled cavities for high-performance nanosensor[J]. IEEE Photonics Journal, 2017, 9(6): 4801509.

    [33] Zhang Y Y, Li S L, Zhang X Y, et al. Evolution of fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor[J]. Optics Communications, 2016, 370: 203–208.

    [34] Yun BF,Hu GH,Cong J W, et al. Fano resonances induced by strong interactions between dipole and multipole plasmons in t-shaped nanorod dimer[J]. Plasmonics, 2014, 9(3): 691–698.

    [35] WangJQ, Fan C Z,HeJ N, et al. Double fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity[J]. Optics Ex-press, 2013, 21(2): 2236–2244.

    [36] Gon.alves M R, Melikyan A, Minassian H, et al. Strong di-pole-quadrupole coupling and fano resonance in h-like metallic nanostructures[J]. Optics Express, 2014, 22(20): 24516–24529.

    Hou Yibo, Huo Yiping, Jiang Xueying, Zhou Chen, Guo Yiyuan, Niu Qiqiang, He Qian, Hao Xiangxiang. Generation of multiple Fano resonance and high FOM resonance based on the crescent cross nanostructure[J]. Opto-Electronic Engineering, 2020, 47(11): 200010
    Download Citation