• Journal of Innovative Optical Health Sciences
  • Vol. 14, Issue 5, 2150011 (2021)
Xiao Liang1, Qiang Liu2、*, Zezhou Sun2, Weizhi Qi2, Yubin Gong3, and Lei Xi2
Author Affiliations
  • 1School of Physics University of Electronic Science and Technology of China Chengdu, Sichuan 610054, P. R. China
  • 2Department of Biomedical Engineering Southern University of Science and Technology Shenzhen, Guangdong 518055, P. R. China
  • 3School of Electrical Science and Engineering University of Electronic Science and Technology of China Chengdu, Sichuan 610054, P. R. China
  • show less
    DOI: 10.1142/s1793545821500115 Cite this Article
    Xiao Liang, Qiang Liu, Zezhou Sun, Weizhi Qi, Yubin Gong, Lei Xi. Investigation of artifacts by mapping SAR in thermoacoustic imaging[J]. Journal of Innovative Optical Health Sciences, 2021, 14(5): 2150011 Copy Citation Text show less
    References

    [1] R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser Jr, D. R. Reinecke, G. A. Kruger, "Breast cancer in vivo: Contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study," Radiology 216(1), 279–283 (2000).

    [2] M. Xu, G. Ku, X. Jin, L. V. Wang, B. D. Fornage, K. K. Hunt, "Breast cancer imaging by microwaveinduced thermoacoustic tomography," Proc. SPIE 5697, 45–48 (2005).

    [3] Y. Zhao, Z. Ji, B. Qin, D. Xing, "A thermoacoustic imaging system with variable curvature and multidimensional detection adapted to breast tumor screening," J. Appl. Phys. 124, 144902 (2018).

    [4] Z. Chi, Y. Zhao, J. Y, T. Li, G. Zhang, H. Jiang, "Thermoacoustic tomography of in vivo human finger joints," IEEE Trans. Biomed. Eng. 66(6), 1598–1608 (2019).

    [5] Z. Chi, L. Huang, S. Ge, H. Jiang, "Technical Note: Anti-phase microwave illumination-based thermoacoustic tomography of in vivo human finger joints," Med. Phys. 46(5), 2363–2369 (2019).

    [6] Z. Chi, Y. Zhao, L. Huang, Z. Zheng, H. Jiang, "Thermoacoustic imaging of rabbit knee joints," Med. Phys. 43(12), 6226–6233 (2016).

    [7] L. Liu, K. He, L. V. Wang, "Transcranial ultrasonic wave propagation simulation: Skull insertion loss and recovery," Proc. SPIE 6437, 64370X (2007).

    [8] Y. Zhao, T. Shan, Z. Chi, H. Jiang, "Thermoacoustic tomography of germinal matrix hemorrhage in neonatal mouse cerebrum," J. X-ray Sci. Technol. 28, 83–93 (2020).

    [9] Y. Zhao, Z. Chi, L. Huang, Z. Zheng, J. Yang, H. Jiang, "Thermoacoustic tomography of in vivo rat brain," J. Innov. Opt. Health Sci. 10(4), 1740001 (2017).

    [10] X. Liang, H. Guo, Q. Liu, C. Wu, Y. Gong, L. Xi, "Thermoacoustic endoscopy," Appl. Phys. Lett. 116, 013702 (2020).

    [11] D. Feng, Y. Xu, G. Ku, L. V. Wang, "Microwaveinduced thermoacoustic tomography: Reconstruction by synthetic aperture," Med. Phys. 28(12), 2427–2431 (2001).

    [12] L. Yao, G. Guo, H. Jiang, "Quantitative microwaveinduced thermoacoustic tomography," Med. Phys. 37(7), 3752–3759 (2010).

    [13] Y. He, C. Liu, L. Lin, L. V. Wang, "Comparative effects of linearly and circularly polarized illumination on microwave-induced thermoacoustic tomography," IEEE Antenn. Wirel. Pr. 16, 1593– 1596 (2017).

    [14] C. Li, M. Pramanik, G. Ku, L. V. Wang, "Image distortion in thermoacoustic tomography caused by microwave diffraction," Phys. Rev. E 77(3), 031923 (2008).

    [15] A. Yan, L. Lin, S. Na, C. Liu, L. V. Wang, "Large field homogeneous illumination in microwaveinduced thermoacoustic tomography based on a quasi-conical spiral antenna," Appl. Phys. Lett. 113 (12), 123701 (2018).

    [16] Y. He, Y. Shen, X. Feng, C. Liu, L. V. Wang, "Homogenizing microwave illumination in thermoacoustic tomography by a linear to-circular polarizer based on frequency selective surfaces," Appl. Phys. Lett. 111(6), 063703 (2017).

    [17] B. Wang, Y. Sun, Z. Wang, X. Wang, "Three-dimensional microwave-induced thermoacoustic imaging based on compressive sensing using an analytically constructed dictionary," IEEE Trans. Microw. Theory Tech. 68(1), 377–386 (2010).

    [18] M. S. Aliroteh, A. Arbabian, "Microwave-induced thermoacoustic imaging of subcutaneous vasculature with near-field RF excitation," IEEE Trans. Microw. Theory Tech. 66(1), 577–588 (2018).

    [19] D. Zhang, H. He, ?. Zong, Y. Liu, "Microwave-induced thermoacoustic imaging of wood: A first demonstration," Wood Sci. Technol. 53(6), 1223– 1235 (2019).

    [20] J. Wang, Z. Zhao, Song, Jian, G. Chen, Z. Nie, Q. Liu, "Reducing the effects of acoustic heterogeneity with an iterative reconstruction method from experimental data in microwave induced thermoacoustic tomography," Med. Phys. 42(5), 2103– 2112 (2015).

    [21] J. Frikel, E. T. Quinto, "Artifacts in incomplete data tomography with applications to photoacoustic tomography and sonar," SIAM J. Appl. Math. 75(2), 703–725 (2015).

    [22] K. Shen, S. Liu, T. Feng, J. Yuan, B. Zhu, C. Tian, "Negativity artifacts in back-projection based photoacoustic tomography," J. Phys. D: Appl. Phys. 54, 074001 (2021).

    [23] H. Nan, T. C. Chou, A. Arbabian, Segmentation and artifact removal in microwave-induced thermoacoustic imaging, 2014 36th Annual Int. Conf. IEEE Engineering in Medicine and Biology Society (2014), pp. 4747–4750.

    [24] M. Lazebnik, D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, W. Temple, D. Mew, J. H. Booske, M. Okoniewski, S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol. 52(20), 6093–6115 (2007).

    [25] M. Lazebnik, L. McCartney, D. Popovic, C. BWatkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol. 52, 2637–2656 (2007).

    [26] E. A. Bermudez, O. R. Rico, "Measurement of complex dielectric permittivity in oils from high voltage transformers using a coaxial prob," Tecciencia 11(21), 61–67 (2016).

    [27] Z. Zheng, L. Huang, H. B. Jiang, "Label-free thermoacoustic imaging of human blood vessels in vivo," Appl. Phys. Lett. 113, 253702 (2018).

    [28] X. Wang, T. Qin, R. S. Witte, H. Xin, "Computational feasibility study of contrast-enhanced thermoacoustic imaging for breast cancer detection using realistic numerical breast phantoms," IEEE Trans. Microw. Theory Tech. 63, 1489–1501 (2015).

    [29] X. Liang, H. Guo, Q. Liu, C. Wu, Y. Gong, L. Xi, "Thermoacoustic endoscopy," Appl. Phys. Lett. 116, 013702 (2020).

    [30] X. Feng, F. Gao, Y. Zheng, "Magnetically mediated thermoacoustic imaging toward deeper penetration," Appl. Phys. Lett. 103, 083704 (2013).

    [31] I. Wol?, "Electromagnetic fields in lossy open dielectric spheres," 2018 Progress in Electromagnetics Research Symp. (2018), pp. 2520–25

    [32] 32. Y. Deng, X. Liu, "Electromagnetic imaging methods for nondestructive evaluation applications," Sensors- Basel 11(12), 11774–11808 (2011).

    [33] A. A. Bogdanov, K. L. Koshelev, P. V. Kapitanova, M. V. Rybin, S. A. Gladyshev, Z. F. Sadrieva, K. B. Samusev, Y. S. Kivshar, M. F. Limonov, "Bound states in the continuum and Fano resonances in the strong mode coupling regime," Adv. Photonics 1(1), 016001 (2019).

    [34] S. Tungjitkusolmun, E. J. Woo, H. Cao, J. Z. Tsai, V. R. Vorperian, J. G. Webster, "A new catheter design using needle electrode for subendocardial RF ablation of ventricular muscles: Finite element analysis and in vitro experiments," IEEE Trans. Bio-med. Eng. 47(1), 23–31 (2000).

    [35] M. Soltani, R. Rahpeima, F. M. Kashkooli, "Breast cancer diagnosis with a microwave thermoacoustic imaging technique—a numerical approach," Med. Biol. Eng. Comput. 57, 1497–1513 (2019).

    [36] R. Rahpeima, M. Soltani, F. M. Kashkooli, "Numerical study of microwave induced thermoacoustic imaging for initial detection of cancer of breast on anatomically realistic breast phantom," Comput. Meth. Prog. Biol. 196, 105606 (2020).

    [37] X. Wang, T. Qin, R. S. Witte, H. Xin, "Computational feasibility study of contrast enhanced thermoacoustic imaging for breast cancer detection using realistic numerical breast phantoms," IEEE Trans. Microw. Theory Tech. 63(5), 1489–1501 (2015).

    [38] L. Xu, X. Wang, "Focused microwave breast hyperthermia monitored by thermoacoustic imaging: A computational feasibility study applying realistic breast phantoms," IEEE J. Electromagn. RF Microw. Med. Biol. 4(2), 81–88 (2020).

    [39] H. Qin, Y. Cui, Z. Wu, Q. Chen, D. Xing, "Realtime thermoacoustic imaging-guidance for breast tumor resection," IEEE Photonics J. 12(3), 1 (2020).

    [40] Z. Chi, Y. Zhao, J. Yang, T. Li, G. Zhang, H. Jiang, "Thermoacoustic tomography of in vivo human finger joints," IEEE Trans. Biomed. Eng. 66(6), 1598–1608 (2019).

    [41] H. Nan, S. Liu, J. G. Buckmaster, A. Arbabian, "Beamforming microwave-induced thermoacoustic imaging for screening applications," IEEE Trans. Microw. Theory Tech. 67(1), 464–474 (2019).

    Xiao Liang, Qiang Liu, Zezhou Sun, Weizhi Qi, Yubin Gong, Lei Xi. Investigation of artifacts by mapping SAR in thermoacoustic imaging[J]. Journal of Innovative Optical Health Sciences, 2021, 14(5): 2150011
    Download Citation