• Infrared and Laser Engineering
  • Vol. 47, Issue 10, 1003004 (2018)
Shang Jinming1、2、*, Zhang Yu1、2, Yang Cheng′ao1、2, Xie Shengwen1、2, Huang Shushan1、2, Yuan Ye1、2, Zhang Yi1、2, Shao Fuhui1、2, Xu Yingqiang1、2, and Niu Zhichuan1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla201847.1003004 Cite this Article
    Shang Jinming, Zhang Yu, Yang Cheng′ao, Xie Shengwen, Huang Shushan, Yuan Ye, Zhang Yi, Shao Fuhui, Xu Yingqiang, Niu Zhichuan. Research progress of GaSb based optically pumped semiconductor disk lasers(invited)[J]. Infrared and Laser Engineering, 2018, 47(10): 1003004 Copy Citation Text show less
    References

    [1] Nikitichev A A, Stepanov A I. 2-mm lasers for optical monitoring[J]. Journal of Optical Technology c/c of Opticheskii Zhurnal, 1999, 66(66): 718-723.

    [2] Zhang Dongyan, Wang Rongrui. Progress on mid-infrared lasers[J]. Laser and Infrared, 2011, 41(5): 487-491. (in Chinese)

    [3] Werle P. A review of recent advances in semiconductor laser based gas monitors[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 1998, 54(2): 197-236.

    [4] Mikhailova M P, Titkov A N. Type II heterojunctions in the GaInAsSb/GaSb system[J]. Semiconductor Science & Technology, 1994, 9(7): 1279-1284.

    [5] Baranov A N, Cuminal Y, Boissier G, et al. Electroluminescence of GaInSb/GaSb strained single quantum well structures grown by molecular beam epitaxy[J]. Semiconductor Science & Technology, 1996, 11(8): 1185-1190.

    [6] Tilma B W, Mangold M, Zaugg C A, et al. Recent advances in ultrafast semiconductor disk lasers[J]. Light Science & Applications, 2015, 4(7): e310.

    [7] Ville-Markus Korpijarvi, Kantola E L, Leinonen T, et al. Monolithic GaInNAsSb/GaAs VECSEL operating at 1 550 nm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6): 480-484.

    [8] Kantola E, Leinonen T, Ranta S, et al. 1 180 nm VECSEL with 50 W output power[C]//SPIE, 2015, 9349: 93490U.

    [9] Kantola E, Leinonen T, Penttinen J P, et al. 615 nm GaInNAs VECSEL with output power above 10 W[J]. Optics Express, 2015, 23(16): 20280.

    [10] Myara M, Garnache A. Industrial integration of high coherence tunable single frequency semiconductor lasers based on VECSEL technology for scientific instrumentation in NIR and MIR[C]//SPIE, 2017, 10087:1008704.

    [11] Burns D, Hopkins J M, Kemp A J, et al. Recent developments in high-power short-wave mid-infrared semiconductor disk lasers[C]//SPIE, 2009: 7193.

    [12] Rosener B, Rattunde M, Kaspar S, et al. GaSb-based optically pumped semiconductor disk lasers emitting in the 2.0-2.8 μm wavelength range[C]//SPIE, 2010, 7578: 75780X.

    [13] Kaspar S, Rattunde M, Topper T, et al. Recent advances in 2-μm GaSb-based semiconductor disk laser—power scaling, narrow-linewidth and short-pulse operation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1501908.

    [14] Schulz N, Rattunde M, Manz C, et al. Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 μm[J]. IEEE Photonics Technology Letters, 2006, 18(9): 1070-1072.

    [15] Corzine S W, Geels R S, Scott J W, et al. Design of Fabry-Perot surface-emitting lasers with a periodic gain structure[J]. IEEE Journal of Quantum Electronics, 1989, 25(6): 1513-1524.

    [16] Cerutti L, Garnache A, Genty F, et al. Low threshold, room temperature laser diode pumped Sb-based VECSEL emitting around 2.1 μm[J]. Electronics Letters, 2003, 39(3): 290-292.

    [17] Hopkins J M, Hempler N, Rosener B, et al. High-power,(AlGaIn)(AsSb) semiconductor disk laser at 2.0 μm[J]. Optics Letters, 2008, 33(2): 201-203.

    [18] Paajaste J, Suomalainen S, Koskinen R, et al. High-power and broadly tunable GaSb-based optically pumped VECSELs emitting near 2 μm[J]. Journal of Crystal Growth, 2009, 311(7): 1917-1919.

    [19] Holl P, Rattunde M, Adler S, et al. GaSb-based 2.0 μm SDL with 17 W output power at 20°C[J]. Electronics Letters, 2016, 52(21): 1794-1795.

    [20] Cerutti L, Garnache A, Ouvrard A, et al. High temperature continuous wave operation of Sb-based vertical external cavity surface emitting laser near 2.3 μm[J]. Journal of Crystal Growth, 2004, 268(1-2): 128-134.

    [21] Cerutti L, Garnache A, Ouvrard A, et al. 2.36 μm diode pumped VCSEL operating at room temperature in continuous wave with circular TEM 00, output beam[J]. Electronics Letters, 2004, 40(14): 869-871.

    [22] Rattunde M, Schulz N, Rosener B, et al. High brightness GaSb-based optically pumped semiconductor disk lasers at 2.3 μm[C]//SPIE , 2007, 6479: 647915.

    [23] Rosener B, Rattunde M, Moser R, et al. GaSb-based optically pumped semiconductor disk laser using multiple gain elements[J]. IEEE Photonics Technology Letters, 2009, 21(13): 848-850.

    [24] Paajaste J, Koskinen R, Nikkinen J, et al. Power scalable 2.5 μm (AlGaIn)(AsSb) semiconductor disk laser grown by molecular beam epitaxy[J]. Journal of Crystal Growth, 2011, 323(1): 454-456.

    [25] Holl P, Rattunde M, Wagner J. Optimization of 2.5 μm VECSEL: influence of the QW active region[C]//SPIE, 2016, 97340: 97340S.

    [26] Rosener B, Rattunde M, Moser R, et al. Continuous-wave room-temperature operation of a 2.8 μm GaSb-based semiconductor disk laser[J]. Optics Letters, 2011, 36(3): 319-321.

    [27] Holl P, Rattunde M, Adler S, et al. GaSb-based VECSEL for high-power applications and Ho-pumping[C]//SPIE, 2017, 10087: 1008705.

    [28] Holms M A, Burns D, Ferguson A I, et al. Actively stabilized single-frequency vertical- external-cavity AlGaAs laser[J]. Photonics Technology Letters IEEE, 1999, 11(12): 1551-1553.

    [29] Cerutti L, Garnache A, Ouvrard A, et al. Vertical cavity surface emitting laser sources for gas detection[J]. Physica Status Solidi, 2005, 202(4): 631-635.

    [30] Hopkins J M, Maclean A J, Burns D, et al. Tunable, single-frequency, diode-pumped 2.3 μm VECSEL[C]// Lasers and Electro-Optics, and Quantum Electronics, 2008, 15(13): 1-2.

    [31] Kaspar S, Rosener B, Rattunde M, et al. Sub-MHz-linewidth 200 mW actively stabilized 2.3 μm semiconductor disk laser[J]. IEEE Photonics Technology Letters, 2011, 23(20): 1538-1540.

    [32] Rosener B, Kaspar S, Rattunde M, et al. 2 μm semiconductor disk laser with a heterodyne linewidth below 10 kHz[J]. Optics Letters, 2011, 36(18): 3587-3589.

    [33] Kaspar S, Rattunde M, Topper T, et al. Semiconductor disk laser at 2.05 μm wavelength with <100 kHz linewidth at 1 W output power[J]. Applied Physics Letters, 2012, 100(3): 407-415.

    [34] Kaspar S, Rattunde M, Topper T, et al. Linewidth narrowing and power scaling of single-frequency 2.X μm GaSb-based semiconductor disk lasers[J]. IEEE Journal of Quantum Electronics, 2013, 49(3): 314-324.

    [35] Price J H V, Monro T M, Ebendorff-Heidepriem H, et al. Mid-IR supercontinuum generation from nonsilica microstructured optical fibers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 738-749.

    [36] Yarborough J M, Lai Y Y, Kaneda Y, et al. Record pulsed power demonstration of a 2 μm GaSb-based optically pumped semiconductor laser grown lattice-mismatched on an AlAs/GaAs Bragg mirror and substrate[J]. Applied Physics Letters, 2009, 95(8): 645109.

    [37] Lai Y Y, Yarborough J M, Kaneda Y, et al. 340 W peak power from a GaSb 2 μm optically pumped semiconductor laser(OPSL) grown mismatched on GaAs[J]. IEEE Photonics Technology Letters, 2010, 22(16): 1253-1255.

    [38] Harkonen A, Paajaste J, Suomalainen S, et al. Picosecond passively mode-locked GaSb-based semiconductor disk laser operating at 2 μm[J]. Optics Letters, 2010, 35(24): 4090-4092.

    [39] Harkonen A, Grebing C, Paajaste J, et al. Mode-locked GaSb disk laser producing 384 fs pulses at 2 μm wavelength[J]. Electronics Letters, 2011, 47(7): 454-456.

    [40] Kaspar S, Rattunde M, Topper T, et al. Electro-optically cavity dumped 2 μm semiconductor disk laser emitting 3 ns pulses of 30 W peak power[J]. Applied Physics Letters, 2012, 101(14): 1063-1087.

    [41] Schulz N, Rattunde M, Wagner J, et al. GaSb-based VECSELs emitting at around 2.35 μm employing different optical pumping concepts[C]//Photonics Europe, 2006: 6184.

    [42] Schulz N, Rattunde M, Ritzenthaler C, et al. Resonant optical in-well pumping of an (AlGaIn)(AsSb)-based vertical-external-cavity surface-emitting laser emitting at 2.35 μm[J]. Applied Physics Letters, 2007, 91(9):1063-1069.

    [43] Holl P, Rattunde M, Adler S, et al. Recent advances in power scaling of GaSb-based semiconductor disk lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6): 324-335.

    [44] Perez J P, Laurain A, Cerutti L, et al. Technologies for thermal management of mid-IR Sb-based surface emitting lasers[J]. Semiconductor Science & Technology, 2017, 25(4): 045021.

    [45] Devautour M, Michon A, Beaudoin G, et al. Thermal management for high-power single-frequency tunable diode-pumped VECSEL emitting in the near- and mid-IR[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1701108.

    [46] Liau Z L. Semiconductor wafer bonding via liquid capillarity[J]. Applied Physics Letters, 2000, 77(5): 651-653.

    [47] Kaspar S, Rattunde M, Schilling C, et al. Micro-cavity 2 μm GaSb-based semiconductor disk laser using high-reflectivity SiC heatspreader[J]. Applied Physics Letters, 2013, 103(4): 041117.

    Shang Jinming, Zhang Yu, Yang Cheng′ao, Xie Shengwen, Huang Shushan, Yuan Ye, Zhang Yi, Shao Fuhui, Xu Yingqiang, Niu Zhichuan. Research progress of GaSb based optically pumped semiconductor disk lasers(invited)[J]. Infrared and Laser Engineering, 2018, 47(10): 1003004
    Download Citation