• Chinese Journal of Lasers
  • Vol. 45, Issue 3, 307003 (2018)
Chen Yue, Wang Luwei, and Song Jun*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/CJL201845.0307003 Cite this Article Set citation alerts
    Chen Yue, Wang Luwei, Song Jun. Multifunctional Nanophotonics Technology for Precise Biomedical Applications[J]. Chinese Journal of Lasers, 2018, 45(3): 307003 Copy Citation Text show less
    References

    [1] Zhang L J, Webster T J. Nanotechnology and nanomaterials: Promises for improved tissue regeneration[J]. Nano Today, 4, 66-80(2009). http://www.sciencedirect.com/science/article/pii/S1748013208000182

    [2] Tong H, Ouyang S X, Bi Y P et al. Nano-photocatalytic materials: Possibilities and challenges[J]. Advanced Materials, 24, 229-251(2012). http://europepmc.org/abstract/MED/21972044

    [3] Dun W T, Li M, Li Y et al[J]. Applications of nanobiosensor in biomedical field Biotechnology Bulletin, 2013, 49-54.

    [4] Song H S, Park T H. Integration of biomolecules and nanomaterials: Towards highly selective and sensitive biosensors[J]. Biotechnology Journal, 6, 1310-1316(2011). http://onlinelibrary.wiley.com/doi/10.1002/biot.201100006/full

    [5] Aslan K, Holley P, Davies L et al. Angular-ratiometric plasmon-resonance based light scattering for bioaffinity sensing[J]. Journal of the American Chemical Society, 127, 12115-12121(2005). http://europepmc.org/abstract/MED/16117553

    [6] Sasaki T, Matsuki N, Ikegaya Y. Action-potential modulation during axonal conduction[J]. Science, 331, 599-601(2011). http://europepmc.org/abstract/med/21292979

    [7] Contag C H, Jenkins D, Contag P R et al. Use of reporter genes for optical measurements of neoplastic disease in vivo[J]. Neoplasia, 2, 41-52(2000). http://www.ncbi.nlm.nih.gov/pmc/articles/pmc1550286/

    [8] Wang X L, Rosol M, Ge S et al. Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging[J]. Blood, 102, 3478-3482(2003). http://www.ncbi.nlm.nih.gov/pubmed/12946998

    [9] Weissleder R, Mahmood U. Molecular imaging[J]. Radiology, 219, 316-333(2001).

    [10] Slowing I I. Vivero-Escoto J L, Wu C W, et al. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers[J]. Advanced Drug Delivery Reviews, 60, 1278-1288(2008).

    [11] Soppimath K S, Aminabhavi T M, Kulkarni A R et al. Biodegradable polymeric nanoparticles as drug delivery devices[J]. Journal of Controlled Release, 70, 1-20(2001). http://www.tandfonline.com/servlet/linkout?suffix=CIT0130&dbid=8&doi=10.1517%2F17425240903483166&key=11166403

    [12] Huang X H. El-Sayed I H, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods[J]. Journal of the American Chemical Society, 128, 2115-2120(2006). http://www.ncbi.nlm.nih.gov/pubmed/16464114

    [13] Sugiura T, Matsuki D, Okajima J et al. Photothermal therapy of tumors in lymph nodes using gold nanorods and near-infrared laser light with controlled surface cooling[J]. Nano Research, 8, 3842-3852(2015). http://link.springer.com/article/10.1007/s12274-015-0884-x

    [14] Liu J, Zheng X P, Yan L et al. Bismuth sulfide nanorods as a precision nanomedicine for in vivo multimodal imaging-guided photothermal therapy of tumor[J]. ACS Nano, 9, 696-707(2015). http://europepmc.org/abstract/med/25561009

    [15] Mou J, Li P, Liu C B et al. Ultrasmall Cu2-xS nanodots for highly efficient photoacoustic imaging-guided photothermal therapy[J]. Small, 11, 2275-2283(2015). http://onlinelibrary.wiley.com/doi/10.1002/smll.201403249/pdf

    [16] Song X J, Liang C, Gong H et al. Photosensitizer-conjugated albumin-polypyrrole nanoparticles for imaging-guided in vivo photodynamic/photothermal therapy[J]. Small, 11, 3932-3941(2015). http://onlinelibrary.wiley.com/doi/10.1002/smll.201500550/pdf

    [17] Manyak M J, Russo A, Smith P D et al. Photodynamic therapy[J]. Journal of the National Cancer Institute, 90, 889-905(1998).

    [18] Dai F, Jain R K. Timeline: Photodynamic therapy for cancer[J]. Nature Reviews Cancer, 3, 380-387(2003). http://www.researchgate.net/publication/10778803_TIMELINE_Photodynamic_therapy_for_cancer

    [19] Lucky S S, Soo K C, Zhang Y. Nanoparticles in photodynamic therapy[J]. Chemical Reviews, 115, 1990-2042(2015).

    [20] Zhang X M, Ai F J, Sun T Y et al. Multimodal upconversion nanoplatform with a mitochondria-targeted property for improved photodynamic therapy of cancer cells[J]. Inorganic Chemistry, 55, 3872-3880(2016). http://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.6b00020

    [21] Zhang T, Lin H M, Cui L R et al. NIR-sensitive UCNP@mSiO2 nanovehicles for on-demand drug release and photodynamic therapy[J]. RSC Advances, 6, 26479-26489(2016). http://www.researchgate.net/publication/297607362_NIR-sensitive_UCNPmSiO2_Nanovehicle_for_on-demand_Drug_Release_and_Photodynamic_Therapy

    [22] Ochsner M. Photophysical and photobiological processes in the photodynamic therapy of tumours[J]. Journal of Photochemistry & Photobiology B, 39, 1-18(1997). http://www.sciencedirect.com/science/article/pii/S1011134496074283?via=ihub&cc=y

    [23] Song J, Qu J L, Swihart M T et al. Near-IR responsive nanostructures for nanobiophotonics: Emerging impacts on nanomedicine[J]. Nanomedicine Nanotechnology Biology & Medicine, 12, 771-788(2016). http://www.sciencedirect.com/science/article/pii/S1549963415002166

    [24] Park K, Lee S, Kang E et al. New generation of multifunctional nanoparticles for cancer imaging and therapy[J]. Advanced Functional Materials, 19, 1553-1566(2009). http://onlinelibrary.wiley.com/doi/10.1002/adfm.200801655/full

    [25] Yuan Y F, Lin Y N, Gu B et al. Optical trapping-assisted SERS platform for chemical and biosensing applications: Design perspectives[J]. Coordination Chemistry Reviews, 339, 138-152(2017). http://www.sciencedirect.com/science/article/pii/S0010854517300231

    [26] Rao S, Raj S, Balint S et al. Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering[J]. Applied Physics Letters, 96, 213701(2010). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5472847

    [27] Fazio B. D'Andrea C, Foti A, et al. SERS detection of biomolecules at physiological pH via aggregation of gold nanorods mediated by optical forces and plasmonic heating[J]. Scientific Reports, 6, 26952(2016). http://www.nature.com/articles/srep26952

    [28] Wright A J, Richens J L, Bramble J P et al. Surface-enhanced Raman scattering measurement from a lipid bilayer encapsulating a single decahedral nanoparticle mediated by an optical trap[J]. Nanoscale, 8, 16395-16404(2016). http://pubs.rsc.org/en/content/articlepdf/2016/nr/c6nr05616d

    [29] Kharroubi L D, Huglo D, Mordon S et al. Nuclear medicine for photodynamic therapy in cancer: Planning, monitoring and nuclear PDT[J]. Photodiagnosis & Photodynamic Therapy, 18, 236-243(2017). http://europepmc.org/abstract/MED/28300723

    [30] Tong R H, Lin H M, Chen Y H et al. Near-infrared mediated chemo/photodynamic synergistic therapy with DOX-UCNPs@mSiO2/TiO2-TC nanocomposite[J]. Materials Science & Engineering C, 78, 998-1005(2017). http://europepmc.org/abstract/MED/28576077

    [31] Zhan Q Q, Qian J, Liang H J et al. Using 915 nm laser excited Tm 3+/Er 3+/Ho 3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation [J]. ACS Nano, 5, 3744-3757(2011).

    [32] Wen H L, Zhu H, Chen X et al. Upconverting near-infrared light through energy management in core-shell-shell nanoparticles[J]. Angewandte Chemie, 52, 13419-13423(2013). http://onlinelibrary.wiley.com/doi/10.1002/anie.201306811/full

    [33] Shen J, Chen G Y, Vu A M et al. Engineering the upconversion nanoparticle excitation wavelength: Cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm[J]. Advanced Optical Materials, 1, 644-650(2013). http://onlinelibrary.wiley.com/doi/10.1002/adom.201300160/pdf

    [34] Wang D, Xue B, Kong X G et al. 808 nm driven Nd 3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging [J]. Nanoscale, 7, 190-197(2014).

    [35] Sordillo L A, Pu Y, Pratavieira S et al. Deep optical imaging of tissue using the second and third near-infrared spectral windows[J]. Journal of Biomedical Optics, 19, 056004(2014). http://europepmc.org/abstract/med/24805808

    [36] Antaris A L, Chen H, Diao S et al. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging[J]. Nature Communications, 8, 15269(2017). http://europepmc.org/abstract/MED/28524850

    [37] Zhu S J, Yang Q L, Antaris A L et al. Molecular imaging of biological systems with a clickable dye in the broad 800- to 1700-nm near-infrared window[J]. Proceedings of the National Academy of Sciences of the United States of America, 114, 962-967(2017). http://www.ncbi.nlm.nih.gov/pubmed/28096386

    [38] Diao S, Blackburn J L, Hong G S et al. Fluorescence imaging in vivo at wavelengths beyond 1500 nm[J]. Angewandte Chemie, 54, 14758-14762(2015). http://europepmc.org/abstract/MED/26460151

    [39] Wang Y Z, Huang B, Lü J et al. Current status of nanotechnology applied in biomedicine[J]. Acta Biophysica Sinica, 25, 168-174(2009).

    [40] Wang C, Xu H, Liang C et al. Iron oxide@polypyrrole nanoparticles as a multifunctional drug carrier for remotely controlled cancer therapy with synergistic antitumor effect[J]. ACS Nano, 7, 6782-6795(2013). http://www.ncbi.nlm.nih.gov/pubmed/23822176

    [41] Dong X, Chen H L, Qin J W et al. Thermosensitive porphyrin-incorporated hydrogel with four-arm PEG-PCL copolymer (II): Doxorubicin loaded hydrogel as a dual fluorescent drug delivery system for simultaneous imaging tracking in vivo[J]. Drug Delivery, 24, 641-650(2017). http://www.ncbi.nlm.nih.gov/pubmed/28282993

    [42] Li Y, Liu G H, Ma J Y et al. Chemotherapeutic drug-photothermal agent co-self-assembling nanoparticles for near-infrared fluorescence and photoacoustic dual-modal imaging-guided chemo-photothermal synergistic therapy[J]. Journal of Controlled Release Official Journal of the Controlled Release Society, 258, 95-107(2017). http://www.ncbi.nlm.nih.gov/pubmed/28501673

    [43] Liu M M, Li Q, Liang L et al. Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging[J]. Nature Communications, 8, 15646(2017). http://pubmedcentralcanada.ca/pmcc/articles/PMC5460036/

    [44] Kircher M F, Gambhir S S, Grimm J. Noninvasive cell-tracking methods[J]. Nature Reviews Clinical Oncology, 8, 677-688(2011). http://www.nature.com/nrclinonc/journal/v8/n11/abs/nrclinonc.2011.141.html

    [45] Gardini L, Capitanio M, Pavone F S. 3D tracking of single nanoparticles and quantum dots in living cells by out-of-focus imaging with diffraction pattern recognition[J]. Scientific Reports, 5, 16088(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC4630642/

    [46] Liu S L, Wang Z G, Zhang Z L et al. Tracking single viruses infecting their host cells using quantum dots[J]. Chemical Society Reviews, 45, 1211-1224(2016). http://www.ncbi.nlm.nih.gov/pubmed/26695711

    [47] Kaiser J. The cancer stem cellgamble[J]. Science, 347, 226-229(2015). http://europepmc.org/abstract/med/25593170

    [48] Doudna J A, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 346, 1258096(2014). http://jmg.bmj.com/lookup/ijlink?linkType=ABST&journalCode=sci&resid=346/6213/1258096&atom=%2Fjmedgenet%2F52%2F5%2F289.atom

    [49] de Henau O, Rausch M, Winkler D et al. . Overcoming resistance to checkpoint blockade therapy by targeting PI3K gamma in myeloid cells[J]. Nature, 539, 443-447(2016). http://www.ncbi.nlm.nih.gov/pubmed/27828943

    [50] Yu C N, Mannan A M, Yvone G M et al. High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines[J]. Nature Biotechnology, 34, 419-423(2016). http://www.nature.com/nbt/journal/v34/n4/nbt.3460/metrics

    [51] McKenna A, Findlay G M, Gagnon J A et al. . Whole organism lineage tracing by combinatorial and cumulative genome editing[J]. Science, 353, 7907(2016). http://www.ncbi.nlm.nih.gov/pubmed/27229144

    [52] Schubert M, Steude A, Liehm P et al. Lasing within live cells containing intracellular optical microresonators for barcode-type cell tagging and tracking[J]. Nano Letters, 15, 5647-5652(2015). http://www.ncbi.nlm.nih.gov/pubmed/26186167

    [53] Humar M, Yun S H. Intracellular microlasers[J]. Nature Photonics, 9, 572-576(2015).

    Chen Yue, Wang Luwei, Song Jun. Multifunctional Nanophotonics Technology for Precise Biomedical Applications[J]. Chinese Journal of Lasers, 2018, 45(3): 307003
    Download Citation