• Acta Optica Sinica
  • Vol. 44, Issue 8, 0814003 (2024)
Meng Zhang1, Xin Wang1、2、*, Suhui Yang1、2、3, Bao Li4, Zhuo Li1、2, Jinying Zhang1、2, and Yanze Gao1、2
Author Affiliations
  • 1School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing Institute of Technology, Beijing 100081, China
  • 3Key Laboratory of Information Photonics Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, China
  • 4The Eleventh Research Institute of China Electronic Science and Technology Group Corporation, Beijing 100015, China
  • show less
    DOI: 10.3788/AOS231973 Cite this Article Set citation alerts
    Meng Zhang, Xin Wang, Suhui Yang, Bao Li, Zhuo Li, Jinying Zhang, Yanze Gao. High-Efficiency Fiber Combining of Long-Wave Infrared Quantum Cascade Lasers[J]. Acta Optica Sinica, 2024, 44(8): 0814003 Copy Citation Text show less
    Schematic diagram of fiber-coupled optical system
    Fig. 1. Schematic diagram of fiber-coupled optical system
    Simulation results of divergent angles of collimated beams. (a) Divergent angle of point-source QCL collimator; (b) divergent angle of extended-source QCL collimator with (0 mm, 0 mm) field of view; (c) divergent angle of extended-source QCL collimator with (-0.004 mm, -0.005 mm) field of view; (d) divergent angle of extended-source QCL collimator with (0.004 mm, 0.005 mm) field of view
    Fig. 2. Simulation results of divergent angles of collimated beams. (a) Divergent angle of point-source QCL collimator; (b) divergent angle of extended-source QCL collimator with (0 mm, 0 mm) field of view; (c) divergent angle of extended-source QCL collimator with (-0.004 mm, -0.005 mm) field of view; (d) divergent angle of extended-source QCL collimator with (0.004 mm, 0.005 mm) field of view
    Simulation results of divergent angles of two collimators. (a) Point-source QCL collimator; (b) extended-source QCL collimator
    Fig. 3. Simulation results of divergent angles of two collimators. (a) Point-source QCL collimator; (b) extended-source QCL collimator
    Simulated intensity distributions of collimated beams. (a) QCL collimator with NA of 0.68; (b) QCL collimator with NA of 0.83
    Fig. 4. Simulated intensity distributions of collimated beams. (a) QCL collimator with NA of 0.68; (b) QCL collimator with NA of 0.83
    Simulation result of single-channel fiber-tcoupling system. (a) Laser spot on input surface of fiber; (b) laser spot at 0.1 mm away from output surface of fiber
    Fig. 5. Simulation result of single-channel fiber-tcoupling system. (a) Laser spot on input surface of fiber; (b) laser spot at 0.1 mm away from output surface of fiber
    Single-mode hollow core fiber combiner. (a) Structure diagram of hollow core fiber; (b) transmission loss of single-mode hollow core fiber; (c) picture of single-mode hollow core fiber; (d) picture of single-mode 4×1 hollow core fiber combiner; (e) picture of output surface of single-mode hollow core 4 in 1 fiber combiner under microscope
    Fig. 6. Single-mode hollow core fiber combiner. (a) Structure diagram of hollow core fiber; (b) transmission loss of single-mode hollow core fiber; (c) picture of single-mode hollow core fiber; (d) picture of single-mode 4×1 hollow core fiber combiner; (e) picture of output surface of single-mode hollow core 4 in 1 fiber combiner under microscope
    Schematic diagram of fiber combining experimental system
    Fig. 7. Schematic diagram of fiber combining experimental system
    Experimental setup of single-mode fiber coupling system
    Fig. 8. Experimental setup of single-mode fiber coupling system
    Picture of QCL collimator and fiber coupler. (a) QCL collimator with NA of 0.83; (b) fiber coupler
    Fig. 9. Picture of QCL collimator and fiber coupler. (a) QCL collimator with NA of 0.83; (b) fiber coupler
    Experimental results of coupling of single-mode long wave infrared hollow core fiber. (a) Fiber output power; (b) fiber coupling efficiency
    Fig. 10. Experimental results of coupling of single-mode long wave infrared hollow core fiber. (a) Fiber output power; (b) fiber coupling efficiency
    QCL collimating spot and fiber coupling output spot. (a) QCL collimating spot; (b) fiber coupling output spot
    Fig. 11. QCL collimating spot and fiber coupling output spot. (a) QCL collimating spot; (b) fiber coupling output spot
    Experimental setup of 4×1 fiber combining system
    Fig. 12. Experimental setup of 4×1 fiber combining system
    Experimental results of QCL 4×1 fiber combining. (a) Fiber coupling output power; (b) total fiber output efficiency and total system coupling efficiency
    Fig. 13. Experimental results of QCL 4×1 fiber combining. (a) Fiber coupling output power; (b) total fiber output efficiency and total system coupling efficiency
    Combined QCL beam spots at different positions along beam propagation direction. (a) -50 mm; (b) 0 mm; (c) 100 mm; (d) 150 mm
    Fig. 14. Combined QCL beam spots at different positions along beam propagation direction. (a) -50 mm; (b) 0 mm; (c) 100 mm; (d) 150 mm
    Beam propagation quality factor M2 of combined QCL. (a) X axis; (b) Y axis
    Fig. 15. Beam propagation quality factor M2 of combined QCL. (a) X axis; (b) Y axis
    QCL centerwavelength /μmFast axis waistradius /μmSlow axis waistradius /μmFast axis divergencehalf-angle /(°)(1/e2Slow axis divergencehalf-angle /(°)(1/e2
    7.844.534.7330.64
    Table 1. Performance parameters of long-wave infrared QCL
    SurfaceRadius of curvatureSemi-diameter /mmThickness /mmMaterialConical coefficient4th order term6th order term8th order term
    1-17.8664.52.3ZnSe0000
    2-5.0604.5-0.5312.130×10-52.181×10-61.144×10-9
    Table 2. Lens data of point-source QCL collimator
    SurfaceRadius of curvatureSemi-diameter /mmThickness /mmMaterialConical coefficient4th order term6th order term
    155.3334.53ZnSe-1.616×10361.329×10-47.005×10-7
    2-6.9904.5-0.2764.593×10-48.702×10-6
    Table 3. Lens data of extended-source QCL collimator
    SurfaceRadius of curvatureSemi-diameter /mmThickness /mmMaterialConical coefficient4th order term6th order term
    155.3334.53ZnSe-1.616×10361.329×10-47.005×10-7
    2-6.9904.5-0.2764.593×10-48.702×10-6
    Table 4. Lens data of QCL collimator with NA of 0.68
    SurfaceRadius of curvatureSemi-diameter /mmThickness /mmMaterialConical coefficient4th order term6th order term
    155.33363ZnSe-1.994×1036-1.743×10-5-4.421×10-7
    2-6.9906-0.2764.480×10-43.157×10-6
    Table 5. Lens data of QCL collimator with NA of 0.83
    SurfaceRadius of curvatureSemi-diameter /mmThickness /mmMaterialConical coefficient
    1209.012.74ZnSe0
    2Infinite12.70
    Table 6. Lens data of fiber coupler
    QCL IDOutput power /mWCentral wavelength /nmSpectral linewidth /nmSlow axis beamquality M2Fast axis beam quality M2
    1472(@1.4 A)7800401.201.56
    2642(@0.8 A)7830851.221.55
    3621(@0.8 A)76591611.251.60
    4535(@1.4 A)77282261.231.50
    Table 7. Measurement results of QCL output properties
    Meng Zhang, Xin Wang, Suhui Yang, Bao Li, Zhuo Li, Jinying Zhang, Yanze Gao. High-Efficiency Fiber Combining of Long-Wave Infrared Quantum Cascade Lasers[J]. Acta Optica Sinica, 2024, 44(8): 0814003
    Download Citation