• Journal of Innovative Optical Health Sciences
  • Vol. 7, Issue 5, 1330009 (2014)
Nicolas Pavillon1、*, Katsumasa Fujita2, and Nicholas Isaac Smith1
Author Affiliations
  • 1Biophotonics Laboratory Immunology Frontier Research Center (IFReC)
  • 2Department of Applied Physics Osaka University, Suita, Osaka 565-0871, Japan
  • show less
    DOI: 10.1142/s1793545813300097 Cite this Article
    Nicolas Pavillon, Katsumasa Fujita, Nicholas Isaac Smith. Multimodal label-free microscopy[J]. Journal of Innovative Optical Health Sciences, 2014, 7(5): 1330009 Copy Citation Text show less
    References

    [1] F. Zernike, "How I discovered phase contrast," Science 121, 345–349 (1955).

    [2] R. Allen, G. David, G. Nomarski, "The Zeiss- Nomarski differential interference equipment for transmitted-light microscopy," Z. Wiss. Mikrosk. 69, 193–221 (1969).

    [3] R. Oldenbourg, "A new view on polarization microscopy," Nature 381, 811–812 (1996).

    [4] N. N. Boustany, S. A. Boppart, V. Backman, "Microscopic imaging and spectroscopy with scattered light," Annu. Rev. Biomed. Eng. 12, 285–314 (2010).

    [5] E. Cuche, P. Marquet, C. Depeursinge, "Simultaneous amplitude-contrast and quantitative phasecontrast microscopy by numerical reconstruction of Fresnel off-axis holograms," Appl. Opt. 38, 6994– 7001 (1999).

    [6] I. Yamaguchi, J.-I. Kato, S. Ohta, J. Mizuno, "Image formation in phase-shifting digital holography and applications to microscopy," Appl. Opt. 40, 6177–6186 (2001).

    [7] M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, C. J. Cogswell, "Linear phase imaging using differential interference contrast microscopy," J. Microsc. 214, 7–12 (2004).

    [8] S. Bernet, A. Jesacher, S. Frhapter, C. Maurer, M. Ritsch-Marte, "Quantitative imaging of complex samples by spiral phase contrast microscopy," Opt. Express 14, 3792–3805 (2006).

    [9] S. S. Kou, L. Waller, G. Barbastathis, C. J. R. Sheppard, "Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging," Opt. Lett. 35, 447–449 (2010).

    [10] N. Streibl, "Phase imaging by the transport equation of intensity," Opt. Commun. 49, 6–10 (1984).

    [11] A. Barty, K. Nugent, D. Paganin, A. Roberts, "Quantitative optical phase microscopy," Opt. Lett. 23, 817–819 (1998).

    [12] P. Bon, G. Maucort, B. Wattellier, S. Monneret, "Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells," Opt. Express 17, 13080–13094 (2009).

    [13] W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, M. S. Feld, "Tomographic phase microscopy," Nat. Methods 4, 717–719 (2007).

    [14] M. Debailleul, V. Georges, B. Simon, R. Morin, O. Haeberle, "High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples," Opt. Lett. 34, 79–81 (2009).

    [15] Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet and C. Depeursinge, "Marker-free phase nanoscopy," Nat. Photonics 7, 113–117 (2013).

    [16] D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte,K.Gregory, C. Puliafito, J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178–1181 (1991).

    [17] J. Schmitt, "Optical coherence tomography (OCT): A review," IEEE J. Quantum Electron. 5, 1205–1215 (1999).

    [18] M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457–463 (2002).

    [19] A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, "Optical coherence tomography — principles and applications," Rep. Prog. Phys. 66, 239– 303 (2003).

    [20] R. Leitgeb, C. Hitzenberger, A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889–894 (2003).

    [21] J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. J. Sivak, "Optical coherence tomography and microscopy in gastrointestinal tissues," IEEE J. Quantum Electron. 2, 1017–1028 (1996).

    [22] A. D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J. L. Connolly, J. G. Fujimoto, "Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy," J. Biomed. Opt. 15, 016025 (2010).

    [23] A. S. G. Curtis, "The mechanism of adhesion of cells to glass: A study by interference reflection microscopy," J. Cell Biol. 20, 199–215 (1964).

    [24] H. Verschueren, "Interference reflection microscopy in cell biology: Methodology and applications," J. Cell Sci. 75, 279–301 (1985).

    [25] S. a i , Y. Ozaki (Eds.) Raman, IR, and Near IR Chemical Imaging, John Wiley & Sons, Inc. (2011).

    [26] H. Yamakoshi, K. Dodo, M. Okada, J. Ando, A. Palonpon, K. Fujita, S. Kawata, M. Sodeoka, "Imaging of EdU, an alkyne-tagged cell proliferation probe, by raman microscopy," J. Am. Chem. Soc. 133, 6102–6105 (2011).

    [27] D. A. Stuart, A. J. Haes, C. R. Yonzon, E. M. Hicks, R. P. Van Duyne, "Biological applications of localised surface plasmonic phenomenae," IET Nanobiotechnol. 152, 13–32 (2005).

    [28] X. Huang, I. H. El-Sayed, W. Qian, M. A. El- Sayed, "Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface raman spectra: A potential cancer diagnostic marker," Nano Lett. 7, 1591–1597 (2007).

    [29] J. K. Pijanka, D. Kumar, T. Dale, I. Yousef, G. Parkes, V. Untereiner, Y. Yang, P. Dumas, D. Collins, M. Manfait, G. D. Sockalingum, N. R. Forsyth, J. Sule-Suso, "Vibrational spectroscopy differentiates between multipotent and pluripotent stem cells," Analyst 135, 3126–3132 (2010).

    [30] D.-H. Kim, R. Jarvis, J. Allwood, G. Batman, R. Moore, E. Marsden-Edwards, L. Hampson, I. Hampson, R. Goodacre, "Raman chemical mapping reveals site of action of HIV protease inhibitors in HPV16 E6 expressing cervical carcinoma cells," Anal. Bioanal. Chem. 398, 3051–3061 (2010).

    [31] H.-J. van Manen, Y. M. Kraan, D. Roos, C. Otto, "Single-cell Raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes," Proc. Natl. Acad. Sci. USA 102, 10159–10164 (2005).

    [32] K. Hamada, K. Fujita, N. I. Smith, M. Kobayashi, Y. Inouye, S. Kawata, "Raman microscopy for dynamic molecular imaging of living cells," J. Biomed. Opt. 13, 044027 (2008).

    [33] T. Dieing, O. Hollricher, J. Toporski (Eds.) Confocal Raman Microscopy, Series in Optical Sciences, Vol. 158 Springer (2011).

    [34] M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, K. Fujita, "Label-free Raman observation of cytochrome c dynamics during apoptosis," Proc. Natl. Acad. Sci. USA 109, 28–32 (2012).

    [35] I. Notingher, C. Green, C. Dyer, E. Perkins, N. Hopkins, C. Lindsay, L. L. Hench, "Discrimination between ricin and sulphur mustard toxicity in vitro using Raman spectroscopy," J. R. Soc. Interface 1, 79–90 (2004).

    [36] B. R. Wood, D. McNaughton, "Resonance Raman spectroscopy in malaria research," Expert Rev. Proteomics 3, 525–544 (2006).

    [37] A. J. Hobro, A. Konishi, C. Coban, N. I. Smith, "Raman spectroscopic analysis of malaria disease progression via blood and plasma samples," Analyst 138, 3927–3933 (2013).

    [38] W. R. Zipfel, R. M. Williams, W. W. Webb, "Nonlinear magic: Multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1369–1377 (2003).

    [39] O. Nadiarnykh, R. B. LaComb, P. J. Campagnola, W. A. Mohler, "Coherent and incoherent SHG in fibrillar cellulose matrices," Opt. Express 15, 3348–3360 (2007).

    [40] J. Squier, M. Müller, "High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging," Rev. Sci. Instrum. 72, 2855–2867 (2001).

    [41] E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, R. K. Jain, "Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation," Nat. Methods 9, 796–800 (2003).

    [42] R. M. Williams, W. R. Zipfel, W. W. Webb, "Interpreting second-harmonic generation images of collagen I fibrils," Biophys. J. 88, 1377–1386 (2005).

    [43] D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, W. W. Webb, "Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy," Proc. Natl. Acad. Sci. USA 100, 7081–7086 (2003).

    [44] P. J. Campagnola, L. M. Loew, "Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nat. Biotechnol. 21, 1356–1360 (2003).

    [45] J. Mertz, "Nonlinear microscopy: New techniques and applications," Curr. Opin. Neurobiol. 14, 610– 616 (2004).

    [46] Y. Barad, H. Eisenberg, M. Horowitz, Y. Silberberg, "Nonlinear scanning laser microscopy by third harmonic generation," Appl. Phys. Lett. 70, 922–924 (1997).

    [47] M. Müller, J. Squier, K. R. Wilson, G. J. Brakenho ff, "3D microscopy of transparent objects using third-harmonic generation," J. Microsc. 191, 266– 274 (1998).

    [48] J. Squier, M. Muller, G. Brakenhoff, K. R. Wilson, "Third harmonic generation microscopy," Opt. Express 3, 315–324 (1998).

    [49] D. Debarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, E. Beaurepaire, "Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy," Nat. Methods 3, 47–53 (2006).

    [50] N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Debarre, P. Bourgine, A. Santos, N. Peyrieras, E. Beaurepaire, "Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy," Science 329, 967–971 (2010).

    [51] S. Witte, A. Negrean, J. C. Lodder, C. P. J. de Kock, G. Testa Silva, H. D. Mansvelder, M. Louise Groot, "Label-free live brain imaging and targeted patching with third-harmonic generation microscopy," Proc. Natl. Acad. Sci. USA 108, 5970– 5975 (2011).

    [52] K. K€onig, P. T. C. So, W. W. Mantulin, B. J. Tromberg, E. Gratton, "Two-photon excited lifetime imaging of autofluorescence in cells during UV A and NIR photostress," J. Microsc. 183, 197–204 (1996).

    [53] S. Huang, A. A. Heikal, W. W. Webb, "Twophoton fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein," Biophys. J. 82, 2811–2825 (2002).

    [54] Q. Yu, A. A. Heikal, "Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level," J. Photochem. Photobiol. B, Biol. 95, 46–57 (2009).

    [55] W. Min, C. W. Freudiger, S. Lu, X. S. Xie, "Coherent nonlinear optical imaging: Beyond fluorescence microscopy," Annu. Rev. Phys. Chem. 62, 507–530 (2011).

    [56] C.-Y. Chung, J. Boik, E. O. Potma, "Biomolecular imaging with coherent nonlinear vibrational microscopy," Annu. Rev. Phys. Chem. 64, 77–99 (2013).

    [57] L. G. Rodriguez, S. J. Lockett, G. R. Holtom, "Coherent anti-stokes Raman scattering microscopy: A biological review," Cytometry A 69A, 779–791 (2006).

    [58] C. L. Evans, E. O. Potma, M. Puoris'haag, D. Ct, C. P. Lin, X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).

    [59] B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, X. S. Xie, "Video-rate molecular imaging in vivo with stimulated raman scattering," Science 330, 1368–1370 (2010).

    [60] M. Fl€orsheimer, C. Brillert, H. Fuchs, "Chemical imaging of interfaces by sum frequency microscopy," Langmuir 15, 5437–5439 (1999).

    [61] K. A. Cimatu, S. Baldelli, "Chemical microscopy of surfaces by sum frequency generation imaging " J. Phys. Chem. C 113, 16575–16588 (2009).

    [62] S. Kogure, K. Inoue, T. Ohmori, M. Ishihara, M. Kikuchi, M. Fujii, M. Sakai, "Infrared imaging of an A549 cultured cell by a vibrational sumfrequency generation detected infrared superresolution microscope," Opt. Express 18, 13402– 13406 (2010).

    [63] L. V. Wang, "Prospects of photoacoustic tomography," Med. Phys. 35, 5758–5767 (2008).

    [64] L. V. Wang, "Multiscale photoacoustic microscopy and computed tomography," Nat. Photonics 3, 503– 509 (2009).

    [65] M. Xu, L. V. Wang, "Photoacoustic imaging in biomedicine," Rev. Sci. Instrum. 77, 041101 (2006).

    [66] C. Zhang, K. Maslov, L. V. Wang, "Subwavelengthresolution label-free photoacoustic microscopy of optical absorption in vivo," Opt. Lett. 35, 3195–3197 (2010).

    [67] C. Zhang, K. Maslov, S. Hu, R. Chen, Q. Zhou, K. Shung, L. V. Wang, "Reflection-mode submicronresolution in vivo photoacoustic microscopy," J. Biomed. Opt. 17, 20501 (2012).

    [68] D.-K. Yao, K. Maslov, K. K. Shung, Q. Zhou, L. V. Wang, "In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA," Opt. Lett. 35, 4139–4141 (2010).

    [69] C. Zhang, Y. S. Zhang, D.-K. Yao, Y. Xia, L. V. Wang, "Label-free photoacoustic microscopy of cytochromes," J. Biomed. Opt. 18, 020504–020504 (2013).

    [70] E. Strohm, E. S. Berndl, M. Kolios, "Probing red blood cell morphology using high-frequency photoacoustics," Biophys. J. 105, 59–67 (2013).

    [71] V. Zharov, D. Lapotko, "Photothermal imaging of nanoparticles and cells," IEEE J. Quantum Electron. 11, 733–751 (2005).

    [72] L. Cognet, S. Berciaud, D. Lasne, B. Lounis, "Photothermal methods for single nonluminescent nano-objects," Anal. Chem. 80, 2288–2294 (2008).

    [73] D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. Shmookler Reis, V. P. Zharov, "Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores," Biophys. J. 102, 672–681 (2012).

    [74] D. Lasne, G. A. Blab, F. De Giorgi, F. Ichas, B. Lounis, L. Cognet, "Label-free optical imaging of mitochondria in live cells," Opt. Express 15, 14184– 14193 (2007).

    [75] S. Lu, W. Min, S. Chong, G. R. Holtom, X. S. Xie, "Label-free imaging of heme proteins with twophoton excited photothermal lens microscopy," Appl. Phys. Lett. 96, 113701 (2010).

    [76] E. Shaffer, C. Moratal, P. Magistretti, P. Marquet, C. Depeursinge, "Label-free second-harmonic phase imaging of biological specimen by digital holographic microscopy," Opt. Lett. 35, 4102–4104 (2010).

    [77] S. Yue, M. Slipchenko, J.-X. Cheng, "Multimodal nonlinear optical microscopy," Laser Photon. Rev. 5, 496–512 (2011).

    [78] W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, W. W. Webb, "Live tissue intrinsic emission microscopy using multiphoton- excited native fluorescence and second harmonic generation," Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).

    [79] J. Adur, V. B. Pelegati, L. F. L. Costa, L. Pietro, A. A. de Thomaz, D. B. Almeida, F. Bottcher-Luiz, L. A. L. A. Andrade, C. L. Cesar, "Recognition of serous ovarian tumors in human samples by multimodal nonlinear optical microscopy," J. Biomed. Opt. 16, 096017 (2011).

    [80] J. Sun, T. Shilagard, B. Bell, M. Motamedi, G. Vargas, "In vivo multimodal nonlinear optical imaging of mucosal tissue," Opt. Express 12, 2478– 2486 (2004).

    [81] S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, H.-J. Tsai, C.-K. Sun, "In vivo developmental biology study using noninvasive multiharmonic generation microscopy," Opt. Express 11, 3093–3099 (2003).

    [82] W. Supatto, T. V. Truong, D. Debarre, E. Beaurepaire, "Advances in multiphoton microscopy for imaging embryos," Curr. Opin. Genet. Dev. 21, 538–548 (2011).

    [83] P. Stoller, K. M. Reiser, P. M. Celliers, A. M. Rubenchik, "Polarization-modulated second harmonic generation in collagen," Biophys. J. 82, 3330–3342 (2002).

    [84] D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, Y. Silberberg, "Depth-resolved structural imaging by third-harmonic generation microscopy," J. Struct. Biol. 147, 3–11 (2004).

    [85] M. Zimmerley, P. Mahou, D. Debarre, M.-C. Schanne-Klein, E. Beaurepaire, "Probing ordered lipid assemblies with polarized third-harmonicgeneration microscopy," Phys. Rev. X 3, 011002 (2013).

    [86] N. Lue, W. Choi, G. Popescu, Z. Yaqoob, K. Badizadegan, R. R. Dasari, M. S. Feld, "Live cell refractometry using hilbert phase microscopy and confocal reflectance microscopy, J. Phys. Chem. A 113, 13327–13330 (2009).

    [87] E. Shaffer, N. Pavillon, C. Depeursinge, "Singleshot, simultaneous incoherent and holographic microscopy," J. Microsc. 245, 49–62 (2012).

    [88] T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, C. Depeursinge, "Polarization imaging by use of digital holography," Appl. Opt. 41, 27–37 (2002).

    [89] Y. Kim, J. Jeong, J. Jang, M. W. Kim, Y. Park, "Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix," Opt. Express 20, 9948–9955 (2012).

    [90] T. Tahara, Y. Awatsuji, Y. Shimozato, T. Kakue, K. Nishio, S. Ura, T. Kubota, O. Matoba, "Singleshot polarization-imaging digital holography based on simultaneous phase-shifting interferometry," Opt. Lett. 36, 3254–3256 (2011).

    [91] R. K. Singh, D. N. Naik, H. Itou, Y. Miyamoto, M. Takeda, "Stokes holography," Opt. Lett. 37, 966–968 (2012).

    [92] M. Villiger, C. Pache, T. Lasser, "Dark-field optical coherence microscopy," Opt. Lett. 35, 3489–3491 (2010).

    [93] J. F. de Boer, T. E. Milner, "Review of polarization sensitive optical coherence tomography and Stokes vector determination," J. Biomed. Opt. 7, 359–371 (2002).

    [94] Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, T. Yatagai, "Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803–1805 (2002).

    [95] J. Zhang, W. Jung, J. Nelson, Z. Chen, "Full range polarization-sensitive Fourier domain optical coherence tomography," Opt. Express 12, 6033– 6039 (2004).

    [96] W. Oh, S. Yun, B. Vakoc, M. Shishkov, A. Desjardins, B. Park, J. de Boer, G. Tearney, B. Bouma, "High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing," Opt. Express 16, 1096–1103 (2008).

    [97] Y. Pu, M. Centurion, D. Psaltis, "Harmonic holography: A new holographic principle," Appl. Opt. 47, A103–A110 (2008).

    [98] E. Shaffer, N. Pavillon, J. Kühn, C. Depeursinge, "Digital holographic microscopy investigation of second harmonic generated at a glass/air interface," Opt. Lett. 34, 2450–2452 (2009).

    [99] D. G. Winters, D. R. Smith, P. Schlup, R. A. Bartels, "Measurement of orientation and susceptibility ratios using a polarization-resolved secondharmonic generation holographic microscope," Biomed. Opt. Express 3, 2004–2011 (2012).

    [100] O. Masihzadeh, P. Schlup, R. A. Bartels, "Labelfree second harmonic generation holographic microscopy of biological specimens," Opt. Express 18, 9840–9851 (2010).

    [101] S. Yazdanfar, L. Laiho, P. So, "Interferometric second harmonic generation microscopy," Opt. Express 12, 2739–2745 (2004).

    [102] S. Yazdanfar, Y. Y. Chen, P. T. So, L. H. Laiho, "Multifunctional imaging of endogenous contrast by simultaneous nonlinear and optical coherence microscopy of thick tissues," Microsc. Res. Tech. 70, 628–633 (2007).

    [103] Y. Jiang, I. Tomov, Y. Wang, Z. Chen, "Secondharmonic optical coherence tomography," Opt. Lett. 29, 1090–1092 (2004).

    [104] Y. Jiang, I. V. Tomov, Y. Wang, Z. Chen, "Highresolution second-harmonic optical coherence tomography of collagen in rat-tail tendon," Appl. Phys. Lett. 86, 133901 (2005).

    [105] M. V. Sarunic, B. E. Applegate, J. A. Izatt, "Spectral domain second-harmonic optical coherence tomography," Opt. Lett. 30, 2391–2393 (2005).

    [106] J. Su, I. V. Tomov, Y. Jiang, Z. Chen, "High-resolution frequency-domain second-harmonic optical coherence tomography," Appl. Opt. 46, 1770–1775 (2007).

    [107] K. Kong, C. J. Rowlands, S. Varma, W. Perkins, I. H. Leach, A. A. Koloydenko, H. C. Williams, I. Notingher, "Diagnosis of tumors during tissue-conserving surgery with integrated autofluorescence and Raman scattering microscopy," Proc. Natl. Acad. Sci. USA (2013). (in press).

    [108] J. M. Benevides, S. A. Overman, G. J. Thomas, "Raman, polarized Raman and ultraviolet resonance Raman spectroscopy of nucleic acids and their complexes," J. Raman Spectrosc. 36, 279–299 (2005).

    [109] L.-D. Chiu, A. F. Palonpon, K. Hamada, S. Kawata, M. Sodeoka, K. Fujita, "Polarised Raman imaging of living cells for chemical contrast manipulation," Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XI, p. 858720. San Francisco, CA (2013).

    [110] Y. Saito, M. Kobayashi, D. Hiraga, K. Fujita, S. Kawano, N. I. Smith, Y. Inouye and S. Kawata, "z-Polarization sensitive detection in micro-Raman spectroscopy by radially polarized incident light," J. Raman Spectrosc. 39, 1643–1648 (2008).

    [111] K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, M. S. Feld, "Surface-enhanced non-linear Raman scattering at the single-molecule level," Chem. Phys. 247, 155–162 (1999).

    [112] K. Matsuzaki, R. Shimada, H.-O. Hamaguchi, "Superresolution vibrational imaging by simultaneous detection of Raman and hyper-Raman scattering," Opt. Lett. 36, 2545–2547 (2011).

    [113] J. Kneipp, H. Kneipp, K. Kneipp, "Two-photon vibrational spectroscopy for biosciences based on surface-enhanced hyper-Raman scattering," Proc. Natl. Acad. Sci. USA 103, 17149–17153 (2006).

    [114] A. Palonpon, T. Ichimura, P. Verma, Y. Inouye, S. Kawata, "Direct evidence of chemical contribution to surface-enhanced hyper-raman scattering," Appl. Phys. Express 1, 092401 (2008).

    [115] C. A. Patil, N. Bosschaart, M. D. Keller, T. G. van Leeuwen, A. Mahadevan-Jansen, "Combined Raman spectroscopy and optical coherence tomography device for tissue characterization," Opt. Lett. 33, 1135–1137 (2008).

    [116] C. A. Patil, J. Kalkman, D. J. Faber, J. S. Nyman, T. G. van Leeuwen, A. Mahadevan-Jansen, "Integrated system for combined Raman spectroscopy– spectral domain optical coherence tomography," J. Biomed. Opt. 16, 011007 (2011).

    [117] J. W. Evans, R. J. Zawadzki, R. Liu, J. W. Chan, S. M. Lane, J. S. Werner, "Optical coherence tomography and Raman spectroscopy of the exvivo retina," J. Biophotonics 2, 398–406 (2009).

    [118] A. Oldenburg, C. Xu, S. Boppart, "Spectroscopic optical coherence tomography and microscopy," IEEE J. Quantum Electron. 13, 1629–1640 (2007).

    [119] U. Morgner, W. Drexler, F. X. Krtner, X. D. Li, C. Pitris, E. P. Ippen, J. G. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 25, 111–113 (2000).

    [120] R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, A. F. Fercher, "Spectral measurement of absorption by spectroscopic frequency- domain optical coherence tomography," Opt. Lett. 25, 820–822 (2000).

    [121] C. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, S. A. Boppart, "Spectroscopic spectraldomain optical coherence microscopy," Opt. Lett. 31, 1079–1081 (2006).

    [122] C. Xu, F. Kamalabadi, S. A. Boppart, "Comparative performance analysis of time-frequency distributions for spectroscopic optical coherence tomography," Appl. Opt. 44, 1813–1822 (2005).

    [123] D. Adler, T. Ko, P. Herz, J. Fujimoto, "Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation," Opt. Express 12, 5487–5501 (2004).

    [124] D. J. Faber, E. G. Mik, M. C. G. Aalders, T. G. van Leeuwen, "Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography," Opt. Lett. 30, 1015–1017 (2005).

    [125] J. W. Kang, N. Lue, C.-R. Kong, I. Barman, N. C. Dingari, S. J. Goldfless, J. C. Niles, R. R. Dasari, M. S. Feld, "Combined confocal Raman and quantitative phase microscopy system for biomedical diagnosis," Biomed. Opt. Express 2, 2484–2492 (2011).

    [126] N. Pavillon, A. J. Hobro, N. I. Smith, "Cell optical density and molecular composition revealed by simultaneous multimodal label-free imaging," Biophys. J. 105, 1123–1132 (2013).

    [127] C. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, M. S. Feld, "Interferometric phase-dispersion microscopy," Opt. Lett. 25, 1526–1528 (2000).

    [128] N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, Z. Yaqoob, "Single-shot quantitative dispersion phase microscopy," Appl. Phys. Lett. 101, 084101 (2012).

    [129] B. Rappaz, F. Charrière, C. Depeursinge, P. J. Magistretti, P. Marquet, "Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium," Opt. Lett. 33, 744–746 (2008).

    [130] Y. Park, T. Yamauchi, W. Choi, R. Dasari, M. S. Feld, "Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells," Opt. Lett. 34, 3668–3670 (2009).

    [131] F. E. Robles, L. L. Satterwhite, A. Wax, "Nonlinear phase dispersion spectroscopy," Opt. Lett. 36, 4665–4667 (2011).

    [132] M. Rinehart, Y. Zhu, A. Wax, "Quantitative phase spectroscopy," Biomed. Opt. Express 3, 958–965 (2012).

    [133] K. Fujita, N. I. Smith, "Label-free molecular imaging of living cells," Mol. Cells 26, 530–535 (2008).

    [134] D. Li, W. Zheng, Y. Zeng, J. Y. Qu, "In vivo and simultaneous multimodal imaging: Integrated multiplex coherent anti-Stokes Raman scattering"and two-photon microscopy," Appl. Phys. Lett. 97, 223702 (2010).

    [135] T. Huff, Y. Shi, Y. Fu, H. Wang, J.-X. Cheng, "Multimodal nonlinear optical microscopy and applications to central nervous system imaging," IEEE J. Quantum Electron. 14, 4–9 (2008).

    [136] J.-W. Jhan, W.-T. Chang, H.-C. Chen, M.-F. Wu, Y.-T. Lee, C.-H. Chen, I. Liau, "Integrated multiple multi-photon imaging and Raman spectroscopy for characterizing structure-constituent correlation of tissues," Opt. Express 16, 16431– 16441 (2008).

    [137] N. Vogler, A. Medyukhina, I. Latka, S. Kemper, M. B€ohm, B. Dietzek, J. Popp, "Towards multimodal nonlinear optical tomography — experimental methodology," Laser Phys. Lett. 8, 617–624 (2011).

    [138] T. Meyer, O. Guntinas-Lichius, F. von Eggeling, G. Ernst, D. Akimov, M. Schmitt, B. Dietzek, J. Popp, "Multimodal nonlinear microscopic investigations on head and neck squamous cell carcinoma: Toward intraoperative imaging," Head Neck 35, E280–E287 (2013).

    [139] C.-H. Chien, W.-W. Chen, J.-T. Wu, T.-C. Chang, "Label-free imaging of Drosophila in vivo by coherent anti-Stokes Raman scattering and twophoton excitation autofluorescence microscopy," J. Biomed. Opt. 16, 016012 (2011).

    [140] H.-W. Wang, T. T. Le, J.-X. Cheng, "Label-free imaging of arterial cells and extracellular matrix using a multimodal CARS microscope," Opt. Commun. 281, 1813–1822 (2008).

    [141] V. Raghunathan, Y. Han, O. Korth, N.-H. Ge, E. O. Potma, "Rapid vibrational imaging with sum frequency generation microscopy," Opt. Lett. 36, 3891–3893 (2011).

    [142] H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, J.-X. Cheng, "A multimodal platform for nonlinear optical microscopy and microspectroscopy," Opt. Express 17, 1282–1290 (2009).

    [143] H. Segawa, M. Okuno, H. Kano, P. Leproux, V. Couderc, H.-O. Hamaguchi, "Label-free tetramodal molecular imaging of living cells with CARS, SHG, THG and TSFG (coherent anti- Stokes Raman scattering, second harmonic generation, third harmonic generation and third-order sum frequency generation)," Opt. Express 20, 9551–9557 (2012).

    [144] J.-X. Cheng, L. D. Book, X. S. Xie, "Polarization coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 26, 1341–1343 (2001).

    [145] D. L. Marks, S. A. Boppart, "Nonlinear interferometric vibrational imaging," Phys. Rev. Lett. 92, 123905 (2004).

    [146] E. O. Potma, C. L. Evans, X. S. Xie, "Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging," Opt. Lett. 31, 241–243 (2006).

    [147] K. Shi, P. S. Edwards, J. Hu, Q. Xu, Y. Wang, D. Psaltis, Z. Liu, "Holographic coherent anti- Stokes Raman scattering bio-imaging," Biomed. Opt. Express 3, 1744–1749 (2012).

    [148] P. S. Edwards, N. Mehta, K. Shi, Q. Xu, D. Psaltis, Z. Liu, "Coherent anti-Stokes Raman scattering holography: Theory and experiment," J. Nonlinear Optic. Phys. Mat. 21, 1250028 (2012).

    [149] J. S. Bredfeldt, C. Vinegoni, D. L. Marks, S. A. Boppart, "Molecularly sensitive optical coherence tomography," Opt. Lett. 30, 495–497 (2005).

    [150] M. Müller, J. M. Schins, "Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy," J. Phys. Chem. B 106, 3715– 3723 (2002).

    [151] H. Kano, H.-O. Hamaguchi, "In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber," Opt. Express 14, 2798– 2804 (2006).

    [152] J. Y. Lee, S.-H. Kim, D. W. Moon, E. S. Lee, "Three-color multiplex CARS for fast imaging and microspectroscopy in the entire CHn stretching vibrational region," Opt. Express 17, 22281–22295 (2009).

    [153] M. Okuno, H. Kano, P. Leproux, V. Couderc, H.-O. Hamaguchi, "Ultrabroadband multiplex CARS microspectroscopy and imaging using a subnanosecond supercontinuum light source in the deep near infrared," Opt. Lett. 33, 923–925 (2008).

    [154] K. Furusawa, N. Hayazawa, S. Kawata, "Twobeam multiplexed CARS based on a broadband oscillator," J. Raman Spectrosc. 41, 840–847 (2010).

    [155] D. Fu, G. Holtom, C. Freudiger, X. Zhang, X. S. Xie, "Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers," J. Phys. Chem. B 117, 4634–4640 (2012).

    [156] L. Kong, M. Ji, G. R. Holtom, D. Fu, C. W. Freudiger, X. S. Xie, "Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator," Opt. Lett. 38, 145–147 (2013).

    [157] D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, X. S. Xie, "Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy," J. Am. Chem. Soc. 134, 3623–3626 (2012).

    [158] C. Krafft, B. Dietzek, J. Popp, "Raman and CARS microspectroscopy of cells and tissues," Analyst 134, 1046–1057 (2009).

    [159] W. Benalcazar, P. Chowdary, Z. Jiang, D. Marks, E. Chaney, M. Gruebele, S. Boppart, "High-speed nonlinear interferometric vibrational imaging of biological tissue with comparison to Raman microscopy," IEEE J. Quantum Electron. 16, 824– 832 (2010).

    [160] A. Downes, R. Mouras, P. Bagnaninchi, A. Elfick, "Raman spectroscopy and CARS microscopy of stem cells and their derivatives," J. Raman Spectrosc. 42, 1864–1870 (2011).

    [161] X. N. He, J. Allen, P. N. Black, T. Baldacchini, X. Huang, H. Huang, L. Jiang, Y. F. Lu, "Coherent anti-Stokes Raman scattering and spontaneous Raman spectroscopy and microscopy of microalgae with nitrogen depletion," Biomed. Opt. Express 3, 2896–2906 (2012).

    [162] T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, J. Popp, "Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis," J. Biomed. Opt. 16, 021113 (2011).

    [163] C. Krafft, B. Dietzek, M. Schmitt, J. Popp, "Raman and coherent anti-Stokes Raman scattering microspectr

    Nicolas Pavillon, Katsumasa Fujita, Nicholas Isaac Smith. Multimodal label-free microscopy[J]. Journal of Innovative Optical Health Sciences, 2014, 7(5): 1330009
    Download Citation