• Photonics Research
  • Vol. 6, Issue 5, 409 (2018)
Yue Li1、2、3, Jian Li1、2、3, Taixing Huang1、2、3, Fei Huang1、2、3, Jun Qin1、2、3, Lei Bi1、2、3, Jianliang Xie1、2、3, Longjiang Deng1、2、3、4, and Bo Peng1、2、3、*
Author Affiliations
  • 1National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 2State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 3Key Laboratory of Multi-Spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 4e-mail: denglj@uestc.edu.cn
  • show less
    DOI: 10.1364/PRJ.6.000409 Cite this Article Set citation alerts
    Yue Li, Jian Li, Taixing Huang, Fei Huang, Jun Qin, Lei Bi, Jianliang Xie, Longjiang Deng, Bo Peng. Active macroscale visible plasmonic nanorod self-assembled monolayer[J]. Photonics Research, 2018, 6(5): 409 Copy Citation Text show less
    References

    [1] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [2] X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, Q. Xiong. Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing. Nano Lett., 11, 3232-3238(2011).

    [3] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 13, 139-150(2014).

    [4] A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, A. Faraon. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun., 7, 13682(2016).

    [5] W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, T. Zentgraf. Spin and wavelength multiplexed nonlinear metasurface holography. Nat. Commun., 7, 11930(2016).

    [6] Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, N. I. Zheludev. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics, 10, 60-65(2016).

    [7] L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, S. Zhang. Broadband metasurfaces with simultaneous control of phase and amplitude. Adv. Mater., 26, 5031-5036(2014).

    [8] E. Almeida, O. Bitton, Y. Prior. Nonlinear metamaterials for holography. Nat. Commun., 7, 12533(2016).

    [9] M. R. Hashemi, S. H. Yang, T. Wang, N. Sepúlveda, M. Jarrahi. Electronically-controlled beam-steering through vanadium dioxide metasurfaces. Sci. Rep., 6, 35439(2016).

    [10] C. Liu, Y. Bai, Q. Zhao, Y. Yang, H. Chen, J. Zhou, L. Qiao. Fully controllable Pancharatnam–Berry metasurface array with high conversion efficiency and broad bandwidth. Sci. Rep., 6, 34819(2016).

    [11] X. Ni, A. V. Kildishev, V. M. Shalaev. Metasurface holograms for visible light. Nat. Commun., 4, 2807(2013).

    [12] N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett., 12, 6328-6333(2012).

    [13] L. Kang, Y. Cui, S. Lan, S. P. Rodrigues, M. L. Brongersma, W. Cai. Electrifying photonic metamaterials for tunable nonlinear optics. Nat. Commun., 5, 4680(2014).

    [14] J. Y. Ou, E. Plum, J. Zhang, N. I. Zheludev. An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nat. Nanotechnol., 8, 252-255(2013).

    [15] L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, S. Zhang. Dispersionless phase discontinuities for controlling light propagation. Nano Lett., 12, 5750-5755(2012).

    [16] F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alu, C. W. Qiu. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light. Sci. Adv., 2, e1501168(2016).

    [17] J. Shi, X. Fang, E. T. F. Rogers, E. Plum, K. F. MacDonald, N. I. Zheludev. Coherent control of Snell’s law at metasurfaces. Opt. Express, 22, 21051-21060(2014).

    [18] Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, J. Valentine. Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation. Nano Lett., 14, 1394-1399(2014).

    [19] L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, S. Zhang. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun., 4, 2808(2013).

    [20] J. Kobashi, H. Yoshida, M. Ozaki. Planar optics with patterned chiral liquid crystals. Nat. Photonics, 10, 389-392(2016).

    [21] Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, F. Capasso. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett., 14, 6526-6532(2014).

    [22] P. Hosseini, C. D. Wright, H. Bhaskaran. An optoelectronic framework enabled by low-dimensional phase-change films. Nature, 511, 206-211(2014).

    [23] J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, Y. Zhang. Terahertz tunable metasurface lens based on vanadium dioxide phase transition. Plasmonics, 11, 1285-1290(2016).

    [24] J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, M. A. Kats. Active optical metasurfaces based on defect-engineered phase-transition materials. Nano Lett., 16, 1050-1055(2016).

    [25] K. Appavoo, R. F. Haglund. Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial. Nano Lett., 11, 1025-1031(2011).

    [26] D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, S. A. Maier. Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure. ACS Photon., 2, 1306-1313(2015).

    [27] O. L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, J. Aizpurua. Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide. Light Sci. Appl., 5, e16173(2016).

    [28] D. W. Ferrara, J. Nag, E. R. MacQuarrie, A. B. Kaye, R. F. Haglund. Plasmonic probe of the semiconductor to metal phase transition in vanadium dioxide. Nano Lett., 13, 4169-4175(2013).

    [29] J. Y. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, R. F. Haglund. Modulation of the gold particle-plasmon resonance by the metal-semiconductor transition of vanadium dioxide. J. Opt. A, 10, 055202(2008).

    [30] G. Xu, Y. Chen, M. Tazawa, P. Jin. Surface plasmon resonance of silver nanoparticles on vanadium dioxide. J. Phys. Chem. B, 110, 2051-2056(2006).

    [31] L. Liu, L. Kang, T. S. Mayer, D. H. Werner. Hybrid metamaterials for electrically triggered multifunctional control. Nat. Commun., 7, 13236(2016).

    [32] H. Kocer, S. Butun, B. Banar, K. Wang, S. Tongay, J. Wu, K. Aydin. Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures. Appl. Phys. Lett., 106, 161104(2015).

    [33] L. Shao, Q. Ruan, R. Jiang, J. Wang. Macroscale colloidal noble metal nanocrystal arrays and their refractive index-based sensing characteristics. Small, 10, 802-811(2014).

    [34] B. Peng, G. Li, D. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Y. Ling, Q. Xiong. Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants. ACS Nano, 7, 5993-6000(2013).

    [35] H. Chen, L. Shao, Q. Li, J. Wang. Gold nanorods and their plasmonic properties. Chem. Soc. Rev., 42, 2679-2724(2013).

    [36] J. Cao, T. Sun, K. T. V. Grattan. Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sens. Actuators B, 195, 332-351(2014).

    [37] B. M. I. van der Zande, M. R. Böhmer, L. G. J. Fokkink, C. Schönenberger. Colloidal dispersions of gold rods: synthesis and optical properties. Langmuir, 16, 451-458(2000).

    [38] X. Huang, M. A. El-Sayed. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res., 1, 13-28(2010).

    [39] S. Link, M. B. Mohamed, M. A. El-Sayed. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B, 103, 3073-3077(1999).

    [40] K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, J. H. Hafner. A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods. ACS Nano, 2, 687-692(2008).

    [41] J. Pérez-Justea, I. Pastoriza-santos, L. Liz-Marzána, P. Mulvaney. Gold nanorods: synthesis, characterization and applications. Coord. Chem. Rev., 249, 1870-1901(2005).

    [42] H. Chen, X. Kou, Z. Yang, W. Ni, J. Wang. Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir, 24, 5233-5237(2008).

    [43] M. Maaza, O. Nemraoui, C. Sella, A. C. Beye. Surface plasmon resonance tunability in Au-VO2 thermochromic nano-composites. Gold Bull., 38, 100-106(2005).

    [44] M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, H. A. Atwater. Frequency tunable near-infrared metamaterials based on VO2 phase transition. Opt. Express, 17, 18330-18339(2009).

    [45] M. Currie, M. A. Mastro, V. D. Wheeler. Characterizing the tunable refractive index of vanadium dioxide. Opt. Mater. Express, 7, 1697-1707(2017).

    [46] M. Chaker, F. Rosei. Materials research in Africa: rising from the falls. Nat. Mater., 11, 187-188(2012).

    [47] H. Kakiuchida, P. Jin, S. Nakao, M. Tazawa. Optical properties of vanadium dioxide film during semiconductive-metallic phase transition. Jpn. J. Appl. Phys., 46, L113-L116(2007).

    [48] M. A. García, V. Bouzas, N. Carmona. Synthesis of gold nanorods for biomedical applications. AIP Conf. Proc., 1275, 84-87(2010).

    [49] P. Schilbe. Raman scattering in VO2. Physica B, 316–317, 600-602(2002).

    [50] M. Pan, J. Liu, H. Zhong, S. Wang, Z. F. Li, X. Chen, W. Lu. Raman study of the phase transition in VO2 thin films. J. Cryst. Growth, 268, 178-183(2004).

    [51] E. U. Donev, R. Lopez, L. C. Feldman, R. F. Haglund. Confocal Raman microscopy across the metal-insulator transition of single vanadium dioxide nanoparticles. Nano Lett., 9, 702-706(2009).

    [52] D. H. Jung, H. S. So, K. H. Ko, J. W. Park, H. Lee, T. T. T. Nguyen, S. Yoon. Electrical and optical properties of VO2 thin films grown on various sapphire substrates by using RF sputtering deposition. J. Korean Phys. Soc., 69, 1787-1797(2016).

    [53] H.-T. Kim, B.-G. Chae, D.-H. Youn, G. Kim, K.-Y. Kang, S.-J. Lee, K. Kim, Y.-S. Lim. Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices. Appl. Phys. Lett., 86, 242101(2005).

    [54] H. Zhang, Q. Li, P. Shen, Q. Dong, B. Liu, R. Liu, T. Cui, B. Liu. The structural phase transition process of free-standing monoclinic vanadium dioxide micron-sized rods: temperature-dependent Raman study. RSC Adv., 5, 83139-83143(2015).

    [55] J. Li, M. Yang, X. Sun, X. Yang, J. Xue, C. Zhu, H. Liu, Y. Xia. Micropatterning of the ferroelectric phase in a poly(vinylidene difluoride) film by plasmonic heating with gold nanocages. Angew. Chem., 128, 14032-14036(2016).

    [56] B. Peng, Q. Zhang, X. Liu, Y. Ji, H. V. Demir, C. H. Huan, T. C. Sum, Q. Xiong. Fluorophore-doped core-multishell spherical plasmonic nanocavities: resonant energy transfer toward a loss compensation. ACS Nano, 6, 6250-6259(2012).

    [57] S. Link, M. A. El-Sayed. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem., 54, 331-366(2003).

    [58] S. Link, M. A. El-Sayed. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem., 19, 409-453(2000).

    [59] P. Vilanova-Martínez, J. Hernández-Velasco, A. R. Landa-Cánovas, F. Agulló-Rueda. Laser heating induced phase changes of VO2 crystals in air monitored by Raman spectroscopy. J. Alloys Compd., 661, 122-125(2016).

    [60] D. W. Ferrara, E. R. MacQuarrie, J. Nag, A. B. Kaye, R. F. Haglund. Plasmon-enhanced low-intensity laser switching of gold::vanadium dioxide nanocomposites. Appl. Phys. Lett., 98, 241112(2011).

    [61] T. Jostmeier, J. Zimmer, H. Karl, H. J. Krenner, M. Betz. Optically imprinted reconfigurable photonic elements in a VO2 nanocomposite. Appl. Phys. Lett., 105, 071107(2014).

    [62] K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, R. F. Haglund. Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection. Nano Lett., 14, 1127-1133(2014).

    [63] M. Yi, C. Lu, Y. Gong, Z. Qi, Y. Cui. Dual-functional sensor based on switchable plasmonic structure of VO2 nano-crystal films and Ag nanoparticles. Opt. Express, 22, 29627-29635(2014).

    [64] X. Wen, Q. Zhang, J. Chai, L. M. Wong, S. Wang, Q. Xiong. Near-infrared active metamaterials and their applications in tunable surface-enhanced Raman scattering. Opt. Express, 22, 2989-2995(2014).

    [65] E. U. Donev, J. I. Ziegler, R. F. Haglund, L. C. Feldman. Size effects in the structural phase transition of VO2 nanoparticles studied by surface-enhanced Raman scattering. J. Opt. A, 11, 125002(2009).

    [66] B. Peng, Z. Li, E. Mutlugun, P. L. Hernández Martínez, D. Li, Q. Zhang, Y. Gao, H. V. Demir, Q. Xiong. Quantum dots on vertically aligned gold nanorod monolayer: plasmon enhanced fluorescence. Nanoscale, 6, 5592-5598(2014).

    [67] R. Lopez, T. E. Haynes, L. A. Boatner. Size effects in the structural phase transition of VO2 nanoparticles. Phys. Rev. B, 65, 224113(2002).

    [68] Y. Ji, Y. Zhang, M. Gao, Z. Yuan, Y. Xia, C. Jin, B. Tao, C. Chen, Q. Jia, Y. Lin. Role of microstructures on the M1-M2 phase transition in epitaxial VO2 thin films. Sci. Rep., 4, 4854(2014).

    Yue Li, Jian Li, Taixing Huang, Fei Huang, Jun Qin, Lei Bi, Jianliang Xie, Longjiang Deng, Bo Peng. Active macroscale visible plasmonic nanorod self-assembled monolayer[J]. Photonics Research, 2018, 6(5): 409
    Download Citation