• Chinese Journal of Quantum Electronics
  • Vol. 36, Issue 1, 6 (2019)
Fei CAO* and Shengmei ZHAO
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2019.01.002 Cite this Article
    CAO Fei, ZHAO Shengmei. Optical encryption scheme based on computational ghost imaging with multiple wavelength light source[J]. Chinese Journal of Quantum Electronics, 2019, 36(1): 6 Copy Citation Text show less
    References

    [1] Pittman T B, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 1995, 52(5): 3429-3434.

    [2] Abouraddy A F, Saleh B E A, Sergienko A V, et al. Role of entanglement in two-photon imaging[J]. Physical Review Letters, 2001, 87(12): 123602.

    [3] Shapiro J H, Boyd R W. The physics of ghost imaging[J]. Quantum Information Processing, 2012, 87(4): 949-993.

    [4] Bennink R S, Bentley S J, Boyd R W. “Two-photon” coincidence imaging with a classical source[J]. Physical Review Letters, 2002, 89: 113601.

    [9] Erkmen B I, Shapiro J H. Unified theory of ghost imaging with Gaussian-state light[J]. Physical Review A, 2008, 77: 043809.

    [10] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Physical Review A, 2009, 79: 053840.

    [11] Ferri F, Magatti D, Lugiato L A, Gatti A. Differential ghost imaging[J]. Physical Review Letters, 2010, 104: 253603.

    [12] Sun B, Welsh S S, Edgar M P, et al. Normalized ghost imaging[J]. Optics Express, 2012, 20: 16892-16901.

    [13] Luo K H, Huang B Q, Zheng W M, et al. Nonlocal imaging by conditional averaging of random reference measurements[J]. Chinese Physics Letters, 2012, 29: 074216.

    [14] Li M F, Zhang Y R, Liu X F, et al. A double-threshold technique for fast time-correspondence imaging[J]. Applied Physics Letters, 2013, 103: 211119.

    [16] Zhao S M, Zhuang P. Correspondence normalized ghost imaging on compressive sensing[J]. Chinese Physics B, 2014, 23: 054203.

    [17] Zhang D J, Li H G, Zhao Q L, et al. Wavelength-multiplexing ghost imaging[J]. Physical Review A, 2015, 92(1): 013823.

    [18] Clemente P, Durán V, Tajahuerce E, et al. Optical encryption based on computational ghost imaging[J]. Optics Letters, 2010, 35(14): 2391-2393.

    [19] Mehrdad T, Reza K, Sohrab A K. Gray-scale and color optical encryption based on computational ghost imaging[J]. Applied Physics Letters, 2012, 101: 101108.

    [20] Zafari, Mohammad, Kheradmand, et al. Optical encryption with selective computational ghost imaging[J]. Journal of Optics, 2014, 16: 105405.

    [21] Zhao S M, Wang L et al. High performance optical encryption based on computational ghost imaging with QR code and compressive sensing technique[J]. Optics Communications, 2015, 353: 90-95.

    [22] Wu J J, Xie Z W, Liu Z J. Multiple-image encryption based on computational ghost imaging[J]. Optics Communications, 2016, 359: 38-43.

    [23] Wang L, Zhao S M, Cheng W W, et al. Optical image hiding based on computational ghost imaging[J]. Optics Communications, 2016, 366: 314.

    [24] Gatti A, Brambilla E, Bache M, et al. Ghost imaging with thermal light: comparing entanglement and classical correlation[J]. Physical Review Letters, 2004, 93: 093602.

    CAO Fei, ZHAO Shengmei. Optical encryption scheme based on computational ghost imaging with multiple wavelength light source[J]. Chinese Journal of Quantum Electronics, 2019, 36(1): 6
    Download Citation