• Laser & Optoelectronics Progress
  • Vol. 59, Issue 19, 1916002 (2022)
Liming Liu1, Zhenwu Peng2, Lairong Xiao2、*, Huan Wang1, Xiaojun Zhao2, Zhenyang Cai2, and Wei Tan2
Author Affiliations
  • 1Beijing Power Machinery Research Institute, Beijing 100074, China
  • 2School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, China
  • show less
    DOI: 10.3788/LOP202259.1916002 Cite this Article Set citation alerts
    Liming Liu, Zhenwu Peng, Lairong Xiao, Huan Wang, Xiaojun Zhao, Zhenyang Cai, Wei Tan. Microstructure and Mechanical Properties of Laser-Formed GH3536 Alloy[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1916002 Copy Citation Text show less
    References

    [1] Huang Q Y, Li H K[M]. Superalloy(2000).

    [2] Shi C X, Lu D, Rong K[M]. Forty years of China’s superalloys, 5-21(1996).

    [3] Gu D D, Zhang H M, Chen H Y et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 47, 0500002(2020).

    [4] Chen X M, Lin Y C, Wen D X et al. Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation[J]. Materials & Design, 57, 568-577(2014).

    [5] Wu K, Liu G Q, Hu B F et al. Effect of processing parameters on hot compressive deformation behavior of a new Ni-Cr-Co based P/M superalloy[J]. Materials Science and Engineering: A, 528, 4620-4629(2011).

    [6] Tomus D, Jarvis T, Wu X et al. Controlling the microstructure of Hastelloy-X components manufactured by selective laser melting[J]. Physics Procedia, 41, 823-827(2013).

    [7] Tomus D, Tian Y, Rometsch P A et al. Influence of post heat treatments on anisotropy of mechanical behavior and microstructure of Hastelloy-X parts produced by selective laser melting[J]. Materials Science and Engineering: A, 667, 42-53(2016).

    [8] Zhang J Z, Zhang A F, Wang H et al. Microstructure and anisotropy of high performance TC4 obtained by micro forging laser cladding deposition[J]. Chinese Journal of Lasers, 46, 0402009(2019).

    [9] Zhao L, Wang L F, Li G Q et al. Research progress on coaxial powder feeding nozzle for laser metal additive manufacturing[J]. Laser & Optoelectronics Progress, 57, 050002(2020).

    [10] Zheng Y L, He Y L, Chen X H et al. Elevated-temperature tensile properties and fracture behavior of GH3536 alloy formed via selective laser melting[J]. Chinese Journal of Lasers, 47, 0802008(2020).

    [11] Xue J Q, Chen X H, Lei L M. Effects of microstructure on mechanical properties of GH3536 alloy fabricated by selective laser melting[J]. Laser & Optoelectronics Progress, 56, 141401(2019).

    [12] Wang P F, Yang K, Chen M Z et al. Simulation and experimental research on the GH3536 molten pool laser cladding on inclined substrate[J]. Chinese Journal of Lasers, 48, 1002121(2021).

    [13] Liu T T, Liao W H, Zhang K et al. Selective laser melting forming hardness rule of cobalt chromium alloy and its prediction model[J]. Chinese Journal of Lasers, 43, 0303007(2016).

    [14] Li S C, Mo B, Xiao G et al. Microstructure characteristics and their influence factors during laser additive manufacturing of metal materials[J]. Laser & Optoelectronics Progress, 58, 0100007(2021).

    [15] Murr L E, Martinez E, Pan X M et al. Microstructures of Rene 142 nickel-based superalloy fabricated by electron beam melting[J]. Acta Materialia, 61, 4289-4296(2013).

    [16] Nalawade S, Sundararaman M, Singh J B et al. Comparison of deformation induced precipitation behaviour in alloy 718 under two microstructural conditions[J]. Transactions of the Indian Institute of Metals, 63, 35-41(2010).

    [17] Wang F D. Mechanical property study on rapid additive layer manufacture Hastelloy® X alloy by selective laser melting technology[J]. The International Journal of Advanced Manufacturing Technology, 58, 545-551(2012).

    [18] Jiao Z H, Lei L M, Yu H C et al. Experimental evaluation on elevated temperature fatigue and tensile properties of one selective laser melted nickel based superalloy[J]. International Journal of Fatigue, 121, 172-180(2019).

    [19] Wang F D. Mechanical property study on rapid additive layer manufacture Hastelloy® X alloy by selective laser melting technology[J]. The International Journal of Advanced Manufacturing Technology, 58, 545-551(2012).

    [20] Sakthivel T, Laha K, Nandagopal M et al. Effect of temperature and strain rate on serrated flow behavior of Hastelloy X[J]. Materials Science and Engineering: A, 534, 580-587(2012).

    [21] Pourbabak S, Montero-Sistiaga M L, Schryvers D et al. Microscopic investigation of as built and hot isostatic pressed Hastelloy X processed by selective laser melting[J]. Materials Characterization, 153, 366-371(2019).

    [22] Wang Y, Wang Y T, Li R D et al. Hall-Petch relationship in selective laser melting additively manufactured metals: using grain or cell size?[J]. Journal of Central South University, 28, 1043-1057(2021).

    Liming Liu, Zhenwu Peng, Lairong Xiao, Huan Wang, Xiaojun Zhao, Zhenyang Cai, Wei Tan. Microstructure and Mechanical Properties of Laser-Formed GH3536 Alloy[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1916002
    Download Citation