• Infrared and Laser Engineering
  • Vol. 50, Issue 11, 20210521 (2021)
Chengyu Shen1、2, Zhicheng Gong1, Tianhua Mao1, Quan Yuan1、2, Yong Li3, and Hao Fu1
Author Affiliations
  • 1Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Beijing Computational Science Research Center, Beijing 100193, China
  • show less
    DOI: 10.3788/IRLA20210521 Cite this Article
    Chengyu Shen, Zhicheng Gong, Tianhua Mao, Quan Yuan, Yong Li, Hao Fu. Landau-Zenner-Stückelberg interference of phonons in a cavity optomechanical systems (Invited)[J]. Infrared and Laser Engineering, 2021, 50(11): 20210521 Copy Citation Text show less
    References

    [1] T Bagci, A Simonsen, S Schmid, et al. Optical detection of radio waves through a nanomechanical transducer. Nature, 507(7490), 81-85(2014).

    [2] T A Palomaki, J W Harlow, J D Teufel, et al. Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature, 495(7440), 210-214(2013).

    [3] J Chan, T P Alegre, A H Safavi-Naeini, et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 478(7367), 89-92(2011).

    [4] A D O'Connell, M Hofheinz, M Ansmann, et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature, 464(7289), 697-703(2010).

    [5] H Okamoto, A Gourgout, C Y Chang, et al. Coherent phonon manipulation in coupled mechanical resonators. Nature Physics, 9(8), 480-484(2013).

    [6] D Zhu, X H Wang, W C Kong, et al. Coherent phonon rabi oscillations with a high-frequency carbon nanotube phonon cavity. Nano Letters, 17(2), 915-921(2017).

    [7] T Tian, S Lin, L Zhang, et al. Perfect coherent transfer in an on-chip reconfigurable nanoelectromechanical network. Phys Rev B, 101(17), 174303(2020).

    [8] Z Z Zhang, X X Song, G Luo, et al. Coherent phonon dynamics in spatially seperated graphene mechanical resonators. PNAS, 117(11), 5582(2020).

    [9] L D Landau. A theory of energy transfer on collisions. Phys Z Sowjet, 1, 52-59(1932).

    [10] Zener C. Nonadiabatic crossing of energy levels [C] Proceedings of the Royal Society of London, 1932, 137(833): 696702.

    [11] S N Shevchenko, S Ashhab, F Nori. Landau–Zener–Stückelberg interferometry. Physics Reports, 492(1), 1-30(2010).

    [12] S Ashhab, J R Johansson, A M Zagoskin, et al. Two-level systems driven by large-amplitude fields. Physical Review A, 75, 063414(2007).

    [13] Z X Yang, Y M Zhang, Y X Zhou, et al. Phase-sensitive Landau-Zener-Stückelberg interference in superconducting quantum circuit. Chinese Physics B, 30, 024212(2021).

    [14] M Kervinen, J E Ramirez-Munoz, A Valimaa, et al. Landau-Zener-Stückelberg interference in a multimode electromechanical system in the quantum regime. Phys Rev Lett, 123, 240401(2019).

    [15] W D Oliver, Y Yu, J Lee, et al. Mach-Zehnder interferometry in a strongly driven superconducting qubit. Science, 310(5754), 1653-1657(2005).

    [16] H Fu, Z C Gong, L P Yang, . et al. Coherent optomechanical switch for motion transduction based on dynamically localized mechanical modes. Phys Rev Appl, 9, 054024(2018).

    [17] L Zhou, S Yang, Y X Liu, et al. Quantum Zeno switch for single-photon coherent transport. Phys Rev A, 80(6), 062109(2009).

    Chengyu Shen, Zhicheng Gong, Tianhua Mao, Quan Yuan, Yong Li, Hao Fu. Landau-Zenner-Stückelberg interference of phonons in a cavity optomechanical systems (Invited)[J]. Infrared and Laser Engineering, 2021, 50(11): 20210521
    Download Citation