• Chinese Journal of Quantum Electronics
  • Vol. 40, Issue 1, 48 (2023)
Hui GUO* and Zhiqiu YE
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2023.01.005 Cite this Article
    GUO Hui, YE Zhiqiu. Orthogonal optimization of random speckle patterns for computational ghost imaging[J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 48 Copy Citation Text show less
    References

    [1] Klyshko D N. Two-photon light: Influence of filtration and a new possible EPR experiment [J]. Physics Letters A, 1988, 128(3,4): 133-137.

    [2] Su F, Liu X, Long H B, et al. Sampling number of image reconstruction arithmetic based on quantum correlated imaging [J]. Chinese Journal of Quantum Electronics, 2015, 32(2): 144-149.

    [3] Shapiro J H. Computational ghost imaging [J]. Physical Review A, 2008, 78(6): 061802.

    [4] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector [J]. Physical Review A, 2009, 79(5): 053840.

    [5] Ma S, Liu Z T, Wang C L, et al. Ghost imaging LiDAR via sparsity constraints using push-broom scanning [J]. Optics Express, 2019, 27(9): 13219-13228.

    [6] Cao F, Zhao S M. Optical encryption scheme based on computational ghost imaging with multiple wavelength light source [J]. Chinese Journal of Quantum Electronics, 2019, 3(1): 6-11.

    [7] Liu X F, Yao X R, Lan R M, et al. Edge detection based on gradient ghost imaging [J]. Optics Express, 2015, 23(26): 33802-33811.

    [8] Wang L, Zou L, Zhao S M. Edge detection based on subpixel-speckle-shifting ghost imaging [J]. Optics Communications, 2018, 407: 181-185.

    [9] Guo H, Wei Z P, He R Y, et al. Imaging scheme of moving object based on temporal and spatial correlation [J]. Chinese Journal of Quantum Electronics, 2019, 3(4): 385-392.

    [10] Li X Y, Cao F, Zhao S M. A compressive complex-valued ghost imaging theoretical scheme based on phase modulation [J]. Acta Photonica Sinica, 2014, 43(Sup 1): 0111001.

    [11] Wu Z W, Qiu X D, Chen L X. Current status and prospect for correlated imaging technique [J]. Laser & Optoelectronics Progress, 2020, 57(6): 060001.

    [12] Yan G Q, Yang F B, Wang X X, et al. Computational ghost imaging based on orthogonal sinusoidal speckle [J]. Laser & Optoelectronics Progress, 2020, 57(4): 041019.

    [13] Zhang Z B, Ma X, Zhong J G. Single-pixel imaging by means of Fourier spectrum acquisition [J]. Nature Communications, 2015, 6: 6225.

    [14] Wang L, Zhao S M. Fast reconstructed and high-quality ghost imaging with fast Walsh-Hadamard transform [J]. Photonics Research, 2016, 4(6): 060240.

    [15] Ferri F, Magatti D, Lugiato L A, et al. Differential ghost imaging [J]. Physical Review Letters, 2010, 104(25): 253603.

    [16] Sun B Q, Welsh S S, Edgar M P, et al. Normalized ghost imaging [J]. Optics Express, 2012, 20(15): 16892-16901.

    [17] Bai X, Li Y Q, Zhao S M. Differential compressive correlated imaging [J]. Acta Physica Sinica, 2013, 62(4): 044209.

    [18] Wang M H, Zhang Z Q, Zhao S M. Performance comparison of different compressed sensing reconstruction algorithms in ghost imaging [J]. Chinese Journal of Quantum Electronics, 2017, 34(5): 523-529.

    [19] Lyu M, Wang W, Wang H, et al. Deep-learning-based ghost imaging [J]. Scientific Reports, 2017, 7(1): 17865.

    [20] Wang F, Wang H, Wang H C, et al. Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging [J]. Optics Express, 2019, 27(18): 25560-25572.

    [21] Zhou D, Cao J, Jiang Y H, et al. Speckle design method based on principal component analysis [J]. Laser & Optoelectronics Progress, 2020, 57(20): 201104.

    [22] Yang C, Wang C L, Guan J, et al. Scalar-matrix-structured ghost imaging [J]. Photonics Research, 2016, 4(6): 060281.

    [23] Yue C, Chen P, Lv X F, et al. Object reconstruction using the binomial theorem for ghost imaging [J]. IEEE Photonics Journal, 2018, 10(6): 3901713.

    GUO Hui, YE Zhiqiu. Orthogonal optimization of random speckle patterns for computational ghost imaging[J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 48
    Download Citation