• Chinese Optics Letters
  • Vol. 22, Issue 3, 033602 (2024)
Rui Ge1, Jiangwei Wu1, Xiangmin Liu1, Yuping Chen1,2,*, and Xianfeng Chen1,3,4
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2School of Physics, Ningxia University, Yinchuan 750021, China
  • 3Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
  • 4Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
  • show less
    DOI: 10.3788/COL202422.033602 Cite this Article Set citation alerts
    Rui Ge, Jiangwei Wu, Xiangmin Liu, Yuping Chen, Xianfeng Chen, "Recent progress in thin-film lithium niobate photonic crystal [Invited]," Chin. Opt. Lett. 22, 033602 (2024) Copy Citation Text show less
    References

    [1] D. Zhu, L. Shao, M. Yu et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics, 13, 242(2021).

    [2] Y. Qi, Y. Li. Integrated lithium niobate photonics. Nanophotonics, 9, 1287(2020).

    [3] A. Boes, B. Corcoran, L. Chang et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photonics Rev., 12, 1700256(2018).

    [4] J. Lin, F. Bo, Y. Cheng et al. Advances in on-chip photonic devices based on lithium niobate on insulator. Photonics Res., 8, 1910(2020).

    [5] Y. Kong, F. Bo, W. Wang et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices. Adv. Mater., 32, 1806452(2020).

    [6] Y. Jia, L. Wang, F. Chen. Ion-cut lithium niobate on insulator technology: recent advances and perspectives. Appl. Phys. Rev., 8, 011307(2021).

    [7] D. Sun, Y. Zhang, D. Wang et al. Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications. Light Sci. Appl., 9, 197(2020).

    [8] S. Saravi, T. Pertsch, F. Setzpfandt. Lithium niobate on insulator: an emerging platform for integrated quantum photonics. Adv. Opt. Mater., 9, 2100789(2021).

    [9] Y. Zheng, X. Chen. Nonlinear wave mixing in lithium niobate thin film. Adv. Phys. X, 6, 1889402(2021).

    [10] H. Hartung, E.-B. Kley, T. Gischkat et al. Ultra thin high index contrast photonic crystal slabs in lithium niobate. Opt. Mater., 33, 19(2010).

    [11] C. Restoin, S. Massy, C. Darraud-Taupiac et al. Fabrication of 1D and 2D structures at submicrometer scale on lithium niobate by electron beam bombardment. Opt. Mater., 22, 193(2003).

    [12] M. R. Beghoul, B. Fougere, A. Boudrioua et al. Photonic band gap grating in He+-implanted lithium niobate waveguides. Opt. Quantum Electron., 39, 333(2007).

    [13] S. Diziain, S. Harada, R. Salut et al. Strong improvement in the photonic stop-band edge sharpness of a lithium niobate photonic crystal slab. Appl. Phys. Lett., 95, 101103(2009).

    [14] F. Sulser, G. Poberaj, M. Koechlin et al. Photonic crystal structures in ion-sliced lithium niobate thin films. Opt. Express, 17, 20291(2009).

    [15] H. Lu, B. F. Issam, G. Ulliac et al. Lithium niobate photonic crystal wire cavity: Realization of a compact electro-optically tunable filter. Appl. Phys. Lett., 101, 151117(2012).

    [16] F. Lacour, N. Courjal, M.-P. Bernal et al. Nanostructuring lithium niobate substrates by focused ion beam milling. Opt. Mater., 27, 1421(2005).

    [17] M. Roussey, M.-P. Bernal, N. Courjal et al. Experimental and theoretical characterization of a lithium niobate photonic crystal. Appl. Phys. Lett., 87, 241101(2005).

    [18] J. Deng, S. Hussain, V. S. Kumar et al. Modeling and experimental investigations of Fano resonances in free-standing photonic crystal slabs. Opt. Express, 21, 3243(2013).

    [19] H. Lu, B. Sadani, G. Ulliac et al. Integrated temperature sensor based on an enhanced pyroelectric photonic crystal. Opt. Express, 21, 16311(2013).

    [20] L. Cai, H. Han, S. Zhang et al. Photonic crystal slab fabricated on the platform of lithium niobate-on-insulator. Opt. Lett., 39, 2094(2014).

    [21] L. Cai, S. Zhang, H. Hu. A compact photonic crystal micro-cavity on a single-mode lithium niobate photonic wire. J. Opt., 18, 035801(2016).

    [22] S.-M. Zhang, L.-T. Cai, Y.-P. Jiang et al. High extinction ratio bandgap of photonic crystals in LNOI wafer. Opt. Mater., 64, 203(2017).

    [23] S. Diziain, R. Geiss, M. Steinert et al. Self-suspended micro-resonators patterned in Z-cut lithium niobate membranes. Opt. Mater. Express, 5, 2081(2015).

    [24] H. Lu, B. Sadani, G. Ulliac et al. 6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity. Opt. Express, 20, 20884(2012).

    [25] G. Ulliac, N. Courjal, H. M. H. Chong et al. Batch process for the fabrication of LiNbO3 photonic crystals using proton exchange followed by CHF3 reactive ion etching. Opt. Mater., 31, 196(2008).

    [26] N. Courjal, J. Dahdah, G. Ulliac et al. Optimization of LiNbO3 photonic crystals: toward 3D LiNbO3 micro-components. Opt. Express, 19, 23008(2011).

    [27] H. Liang, R. Luo, Y. He et al. High-quality lithium niobate photonic crystal nanocavities. Optica, 4, 1251(2017).

    [28] M. Li, H. Liang, R. Luo et al. High-Q 2D lithium niobate photonic crystal slab nanoresonators. Laser Photonics Rev., 13, 1800228(2019).

    [29] M. Li, H. Liang, R. Luo et al. Photon-level tuning of photonic nanocavities. Optica, 6, 860(2019).

    [30] M. Li, J. Ling, Y. He et al. Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun., 11, 4123(2020).

    [31] W. Jiang, R. N. Patel, F. M. Mayor et al. Lithium niobate piezo-optomechanical crystals. Optica, 6, 845(2019).

    [32] W. Jiang, F. M. Mayor, R. N. Patel et al. Nanobenders as efficient piezoelectric actuators for widely tunable nanophotonics at CMOS-level voltages. Commun. Phys., 3, 156(2020).

    [33] W. Jiang, C. J. Sarabalis, Y. D. Dahmani et al. Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency. Nat. Commun., 11, 1166(2020).

    [34] L. Yang, S. Wang, M. Shen et al. Controlling single rare earth ion emission in an electro-optical nanocavity. Nat. Commun., 14, 1718(2023).

    [35] R. Ge, X. Yan, Z. Liang et al. Large quality factor enhancement based on cascaded uniform lithium niobate bichromatic photonic crystal cavities. Opt. Lett., 48, 113(2023).

    [36] R. Geiss, S. Diziain, R. Iliew et al. Light propagation in a free-standing lithium niobate photonic crystal waveguide. Appl. Phys. Lett., 97, 131109(2010).

    [37] R. Geiss, S. Diziain, M. Steinert et al. Photonic crystals in lithium niobate by combining focussed ion beam writing and ion-beam enhanced etching. Phys. Status Solidi A, 10, 211(2014).

    [38] S. Diziain, R. Geiss, M. Zilk et al. Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity. Appl. Phys. Lett., 103, 051117(2013).

    [39] S. Diziain, R. Geiss, M. Zilk et al. Mode analysis of photonic crystal L3 cavities in self-suspended lithium niobate membranes. Appl. Phys. Lett., 103, 251101(2013).

    [40] R. Geiss, J. Brandt, H. Hartung et al. Photonic microstructures in lithium niobate by potassium hydroxide-assisted ion beam-enhanced etching. J. Vac. Sci. Technol. B, 33, 010601(2015).

    [41] V. Calero, M.-A. Suarez, R. Salut et al. Toward highly reliable, precise, and reproducible fabrication of photonic crystal slabs on lithium niobate. J. Lightwave Technol., 37, 698(2019).

    [42] L. Qu, L. Bai, C. Jin et al. Giant second harmonic generation from membrane metasurfaces. Nano Lett., 22, 9652(2023).

    [43] Z. Huang, K. Luo, Z. Feng et al. Resonant enhancement of second harmonic generation in etchless thin film lithium niobate heteronanostructure. Sci. China Phys. Mech. Astron., 65, 104211(2022).

    [44] J. Zhang, B. Pan, W. Liu et al. Ultra-compact electro-optic modulator based on etchless lithium niobate photonic crystal nanobeam cavity. Opt. Express, 30, 20839(2022).

    [45] M. Ishikawa, M. Iwanaga. In-plane second harmonic generations in photonic crystal slabs of LiNbO3. Appl. Phys. Express, 1, 082101(2008).

    [46] T. Wang, X. Xu, L. Yang et al. Fabrication of lithium niobate fork grating by laser-writing-induced selective chemical etching. Nanophotonics, 11, 829(2022).

    [47] T. Wang, X. Cheng, X. Li et al. Femtosecond-laser-assisted high-aspect-ratio nanolithography in lithium niobate. Nanoscale, 15, 15298(2023).

    [48] Q. Rolland, S. Dupont, J. Gazalet et al. Simultaneous bandgaps in LiNbO3 phoxonic crystal slab. Opt. Express, 22, 16288(2014).

    [49] S. L. Li. Transmission characteristics simulation of an erbium-doped lithium niobate film photonic crystal slab. Optik, 124, 6919(2013).

    [50] P. Sivarajah, A. A. Maznev, B. K. Ofori-Okai et al. What is the Brillouin zone of an anisotropic photonic crystal?. Phys. Rev. B, 93, 054204(2016).

    [51] M. Minkov, I. A. D. Williamson, L. C. Andreani et al. Inverse design of photonic crystals through automatic differentiation. ACS Photonics, 7, 1729(2020).

    [52] Y. Li, C. Wang, M. Loncar. Design of nano-groove photonic crystal cavities in lithium niobate. Opt. Lett., 40, 2902(2015).

    [53] H. Jiang, H. Liang, R. Luo et al. Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities. Appl. Phys. Lett., 113, 021104(2018).

    [54] H. Jiang, X. Yan, H. Liang et al. High harmonic optomechanical oscillations in the lithium niobate photonic crystal nanocavity. Appl. Phys. Lett., 117, 081102(2020).

    [55] Y. Zhang, Y. Zhao, R. Lv. A review for optical sensors based on photonic crystal cavities. Sens. Actuators A, 233, 374(2015).

    [56] Y. Akahane, T. Asano, B.-S. Song et al. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature, 425, 944(2003).

    [57] Y. Tanaka, T. Asano, S. Noda. Design of photonic crystal nanocavity with Q-factor of 109. J. Lightwave Technol., 26, 1532(2008).

    [58] R. Iliew, C. Etrich, T. Pertsch et al. Slow-light enhanced collinear second-harmonic generation in two-dimensional photonic crystals. Phys. Rev. B, 77, 115124(2008).

    [59] R. Iliew, C. Etrich, T. Pertsch et al. Huge enhancement of backward second-harmonic generation with slow light in photonic crystals. Phys. Rev. B, 81, 023820(2010).

    [60] J. Lu, J. B. Surya, X. Liu et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W. Optica, 6, 1455(2019).

    [61] X. Yan, L. Ge, B. Zhu et al. High optical damage threshold on-chip lithium tantalate microdisk resonator. Opt. Lett., 45, 4100(2020).

    [62] R. Ge, X. Liu, X. Yan et al. Doubly resonant photonic crystal cavity using merged bound states in the continuum. Phys. Rev. B, 107, 165406(2023).

    [63] X. Zhang, L. He, X. Gan et al. Quasi-bound states in the continuum enhanced second-harmonic generation in thin-film lithium niobate. Laser Photonics Rev., 16, 220031(2022).

    [64] Z. Zheng, L. Xu, L. Huang et al. Boosting second-harmonic generation in the metasurface using high- guided resonances and bound states in the continuum. Phys. Rev. B, 106, 125411(2022).

    [65] S. Saravi, S. Diziain, M. Zilk et al. Phase-matched second-harmonic generation in slow-light photonic crystal waveguides. Phys. Rev. A, 92, 063821(2015).

    [66] S. Saravi, R. Quintero-Bermudez, F. Setzpfandt et al. Effect of loss on slow-light-enhanced second-harmonic generation in periodic nanostructures. Opt. Lett., 41, 3110(2016).

    [67] S. Saravi, T. Pertsch, F. Setzpfandt. Generation of counterpropagating path-entangled photon pairs in a single periodic waveguide. Phys. Rev. Lett., 118, 183603(2017).

    [68] S. Saravi, T. Pertsch, F. Setzpfandt. Photonic crystal waveguides as sources of counterpropagating factorizable biphoton states. Opt. Lett., 44, 69(2019).

    [69] L. Zhao, M. Steinhart, M. Yosef et al. Large-scale template-assisted growth of LiNbO3 one-dimensional nanostructures for nano-sensors. Sens. Actuators B, 109, 86(2005).

    [70] R. Luo, H. Jiang, H. Liang et al. Self-referenced temperature sensing with a lithium niobate microdisk resonator. Opt. Lett., 42, 1281(2017).

    [71] Y. Xue, Z. Ruan, L. Liu. Electrode-free photonic electric field sensor on thin film lithium niobate with high sensitivity. Opt. Lett., 47, 2097(2022).

    [72] M.-P. Bernal, J. Amet, J. Safioui et al. Pyroelectric control of the superprism effect in a lithium niobate photonic crystal in slow light configuration. Appl. Phys. Lett., 98, 071101(2011).

    [73] W. Qiu, H. Lu, F. I. Baida et al. Ultra-compact on-chip slot Bragg grating structure for small electric field detection. Photonics Res., 5, 212(2017).

    [74] F. Zangeneh-Nejad, R. Fleury. Topological fano resonances. Phys. Rev. Lett., 122, 014301(2019).

    [75] W. Qiu, A. Ndao, V. C. Vila et al. Fano resonance-based highly sensitive, compact temperature sensor on thin film lithium niobate. Opt. Lett., 41, 1106(2016).

    [76] W. Qiu, A. Ndao, H. Lu et al. Guided resonances on lithium niobate for extremely small electric field detection investigated by accurate sensitivity analysis. Opt. Express, 24, 20196(2016).

    [77] V. Calero, M.-A. Suarez, R. Salut et al. An ultra wideband-high spatial resolution-compact electric field sensor based on Lab-on-Fiber technology. Sci. Rep., 9, 8058(2019).

    [78] B. Robert, V. Calero, M.-A. Suarez et al. Cost-efficient and high precision method for the assembly of LN-based photonic crystal slabs on the fiber tip for the implementation of E-field sensors. Opt. Mater. Express, 11, 2318(2021).

    [79] X. Ma, C. Zhuang, R. Zeng et al. Large-dynamic-range athermal lithium niobite on insulator/TiO2 nanobeam electric field sensor. J. Phys. D Appl. Phys., 54, 105101(2020).

    [80] A. Hoblos, M. Suarez, N. Courjal et al. Excitation of symmetry protected modes in a lithium niobate membrane photonic crystal for sensing applications. OSA Contin., 3, 3008(2020).

    [81] A. Panda, P. D. Pukhrambam, G. Keiser. Realization of sucrose sensor using 1D photonic crystal structure vis-à-vis band gap analysis. Microsyst. Technol., 27, 833(2021).

    [82] M. Xu, M. He, H. Zhang et al. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun., 11, 3911(2020).

    [83] M. Xu, Y. Zhu, F. Pittalà et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica, 9, 61(2022).

    [84] H. Lu, W. Qiu, C. Guyot et al. Optical and RF characterization of a lithium niobate photonic crystal modulator. IEEE Photon. Technol. Lett., 26, 1332(2014).

    [85] Y. Qi, Z. Zhang, W. Jia et al. Design of ultracompact high-speed-integrated lithium-niobate periodic dielectric waveguide modulator. Adv. Photonics Res., 3, 2200050(2022).

    [86] C. Deng, L. Zhu, M. Lu et al. Design and simulation of high modulation efficiency, low group velocity dispersion lithium niobate slow-wave electro-optic modulator based on a fishbone-like grating. Opt. Laser. Technol., 158, 108769(2023).

    [87] Y. Zhang, H. Tian, D. Yang et al. Ultra-compact low-voltage and slow-light MZI electro-optic modulator based on monolithically integrated photonic crystal. Opt. Commun., 315, 138(2013).

    [88] G. W. Burr, S. Diziain, M.-P. Bernal. The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals. Opt. Express, 16, 6302(2008).

    [89] O. Yavuzcetin, B. Ozturk, D. Xiao et al. Conicity and depth effects on the optical transmission of lithium niobate photonic crystals patterned by focused ion beam. Opt. Mater. Express, 1, 1262(2011).

    [90] Q. Z. Zhao, Z. B. Zhang, J. Q. Xu et al. Hole geometry effect on stop-band characteristics of photonic crystal in Ti-diffused LiNbO3 waveguide. Mater. Chem. Phys., 186, 498(2017).

    [91] Q. Z. Zhao, D. L. Zhang. Transmission spectral characteristics of photonic crystals milled in annealed proton-exchange LiNbO3 waveguide. Chin. Phys. Lett., 34, 034207(2017).

    [92] H.-F. Wang, S. K. Gupta, X.-Y. Zhu et al. Bound states in the continuum in a bilayer photonic crystal with TE-TM cross coupling. Phys. Rev. B, 98, 214101(2018).

    [93] Z. Li, R. N. Wang, G. Lihachev et al. Tightly confining lithium niobate photonic integrated circuits and lasers(2022).

    [94] C.-H. Hou, M.-P. Bernal, C.-C. Chen et al. Purcell effect observation in erbium doped lithium niobate photonic crystal structures. Opt. Commun., 281, 4151(2008).

    [95] Y. Liu, X. Yan, J. Wu et al. On-chip erbium-doped lithium niobate microcavity laser. Sci. China Phys. Mech. Astron., 64, 234262(2021).

    [96] Q. Luo, Z. Hao, C. Yang et al. Microdisk lasers on an erbium-doped lithium-niobite chip. Sci. China Phys. Mech. Astron., 64, 234263(2021).

    [97] T. Li, K. Wu, M. Cai et al. A single-frequency single-resonator laser on erbium-doped lithium niobate on insulator. APL Photonics, 6, 101301(2021).

    [98] Z.-W. Yan, Q. Wang, M. Xiao et al. Probing rotated Weyl physics on nonlinear lithium niobate-on-insulator chips. Phys. Rev. Lett., 127, 013901(2021).

    [99] S. Duan, Y. Chen, G. Li et al. Broadband polarization beam splitter based on a negative refractive lithium niobate photonic crystal slab. Chin. Opt. Lett., 14, 042301(2016).

    [100] C. Lu, B. Zhu, C. Zhu et al. All-optical logic gates and a half-adder based on lithium niobate photonic crystal micro-cavities. Chin. Opt. Lett., 17, 072301(2019).

    [101] J. Jin, X. Yin, L. Ni et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering. Nature, 574, 501(2019).

    Rui Ge, Jiangwei Wu, Xiangmin Liu, Yuping Chen, Xianfeng Chen, "Recent progress in thin-film lithium niobate photonic crystal [Invited]," Chin. Opt. Lett. 22, 033602 (2024)
    Download Citation