• Chinese Journal of Quantum Electronics
  • Vol. 39, Issue 3, 411 (2022)
Xiaodong ZHOU1、*, Sheng WANG1, Tianbing ZHANG2, Zongfu HU1, Bao FENG2、3, and Hong XIAO4
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007461.2022.03.012 Cite this Article
    ZHOU Xiaodong, WANG Sheng, ZHANG Tianbing, HU Zongfu, FENG Bao, XIAO Hong. Continuous-variable QKD data reconciliation protocol based on concatenated Polar coding and multistage decoding[J]. Chinese Journal of Quantum Electronics, 2022, 39(3): 411 Copy Citation Text show less
    References

    [1] Wang X B. Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors[J]. Physical Review A, 2013, 87(1): 012320.

    [2] Hu K, Mao Q P, Zhao S M. Round robin differential phase shift quantum key distribution protocol based on heralded single photon source and detector decoy state[J]. Acta Optica Sinica, 2017, 37(5): 0527002.

    [3] Sha Y T, Feng B, Jia W, et al. A method to eliminate influence of fluctuation of light source on performance of quantum key distribution[J]. Chinese Journal of Quantum Electronics, 2020, 37(1): 57-62.

    [4] Jiang H H, Feng B, Lu M, et al. Round-robin differential-phase-shift quantum key distribution without three-photon pulses[J]. Chinese Journal of Quantum Electronics, 2020, 37(2): 172-178.

    [5] Mao Q P, Wang L, Zhao S M. Efficient quantum key distribution based on hybrid degrees of freedom[J]. Laser Physics, 2019, 29(8): 085201.

    [6] Wang L, Zhao S M, Gong L Y, et al. Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum[J]. Chinese Physics B, 2015, 24(12): 120307.

    [7] Mao Q P, Wang L, Zhao S M. Plug-and-play round-robin differential phase-shift quantum key distribution[J]. Scientific Reports, 2017, 7: 15435.

    [8] Wang L, Zhao S M. Round-robin differential-phase-shift quantum key distribution with heralded pair-coherent sources[J]. Quantum Information Processing, 2017, 16(4): 100.

    [9] Pirandola S, Mancini S, Lloyd S, et al. Continuous-variable quantum cryptography using two-way quantum communication[J]. Nature Physics, 2008, 4(9): 726-730.

    [10] Cerf N J, Lévy M, van Assche G. Quantum distribution of Gaussian keys with squeezed states[J]. Physical Review A, 2001, 63(5): 052311.

    [11] Grosshans F, Grangier P. Continuous variable quantum cryptography using coherent states[J]. Physical Review Letters, 2002, 88(5): 057902.

    [12] Leverrier A, Alleaume R, Boutros J, et al. Multidimensional reconciliation for continuous-variable quantum key distribution[C]. IEEE International Symposium on Information Theory, 2008: 1020-1024.

    [13] Bloch M, Andrew T, Steven W. Efficient reconciliation of correlated continuous random variables using LDPC codes[OL]. 2005, arXiv preprint cs/0509041.

    [14] Grosshans F, van Assche G, Wenger J, et al. Quantum key distribution using Gaussian-modulated coherent states[J]. Nature, 2003, 421(6920): 238-241.

    [15] Zhao S M, Shen Z G, Xiao H, et al. Multidimensional reconciliation protocol for continuous-variable quantum key agreement with polar coding[J]. Science China Physics, Mechanics & Astronomy, 2018, 61(9): 090323.

    [16] Nguyen K C, van Assche G, Cerf N J. Side-information coding with turbo codes and its application to quantum key distribution[OL]. 2004, https://arxiv.org/abs/cs/0406001.

    [17] Arikan E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels[J]. IEEE Transactions on Information Theory, 2009, 55(7): 3051-3073.

    ZHOU Xiaodong, WANG Sheng, ZHANG Tianbing, HU Zongfu, FENG Bao, XIAO Hong. Continuous-variable QKD data reconciliation protocol based on concatenated Polar coding and multistage decoding[J]. Chinese Journal of Quantum Electronics, 2022, 39(3): 411
    Download Citation