• Opto-Electronic Engineering
  • Vol. 45, Issue 3, 170703 (2018)
[in Chinese]1、2, [in Chinese]1、2, [in Chinese]1、2, [in Chinese]1、2, [in Chinese]1、2、3, [in Chinese]1、2, and [in Chinese]1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.12086/oee.2018.170703 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Ocular aberrations manipulation with adaptive optics and its application[J]. Opto-Electronic Engineering, 2018, 45(3): 170703 Copy Citation Text show less
    References

    [1] Liang J Z, Williams D R. Aberrations and retinal image quality of the normal human eye[J]. Journal of the Optical Society of America A, 1997, 14(11): 2873–2883.

    [2] Williams D R. Imaging single cells in the living retina[J]. Vision Research, 2011, 51(13): 1379-1396, doi: 10.1016/j.visres.2011. 05.002.

    [3] Roorda A. Adaptive optics for studying visual function: A comprehensive review[J]. Journal of Vision, 2011, 11(5): 6.

    [4] Rossi E A, Weiser P, Tarrant J, et al. Visual performance in emmetropia and low myopia after correction of high-order aberrations[ J]. Journal of Vision, 2007, 7(8): 14.

    [5] Chen L, Artal P, Gutierrez D, et al. Neural compensation for the best aberration correction[J]. Journal of Vision, 2007, 7(10): 9.

    [6] Elliott S L, Choi S S, Doble N, et al. Role of high-order aberrations in senescent changes in spatial vision[J]. Journal of Vision, 2009, 9(2): 24.

    [7] Dai Y, Zhao L N, Xiao F, et al. Adaptive optics vision simulation and perceptual learning system based on a 35-element bimorph deformable mirror[J]. Applied Optics, 2015, 54(5): 979–985.

    [8] Zhou J W, Zhang Y D, Dai Y, et al. The eye limits the brain’s learning potential[J]. Scientific Reports, 2012, 2: 364, doi: 10.1038/srep00364.

    [9] Liao M, Zhao H X, Liu L Q, et al. Training to improve contrast sensitivity in amblyopia: correction of high-order aberrations[J]. Scientific Reports, 2016, 6: 35702, doi: 10.1038/srep35702.

    [10] Liang B. Effects of adaptive optics correction of ocular aberrations on binocular summation[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2013.

    [11] Kang J, Xiao F, Zhao J L, et al. Effects of higher-order aberration correction on stereopsis at different viewing durations[J]. Journal of Biomedical Optics, 2015, 20(7): 075005.

    [12] Kang J, Dai Y, Zhang Y D. Temporal integration property of stereopsis after higher-order aberration correction[J]. Biomedical Optics Express, 2015, 6(11): 4472–4482.

    [13] Kang J. Effect of ocular higher-order aberration correction on stereopsis and binocular accommodation[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2016.

    [14] IJspeert J K, de Waard P W T, van den Berg T J T P, et al. The intraocular straylight function in 129 healthy volunteers; Dependence on angle, age and pigmentation[J]. Vision Research, 1990, 30(5): 699–707.

    [15] Artal P, Benito A, Pérez G M, et al. An objective scatter index based on double-pass retinal images of a point source to classify cataracts[J]. PLoS One, 2011, 6(2): e16823.

    [16] Güell J L, Pujol J, Arjona M, et al. Optical quality analysis system; instrument for objective clinical evaluation of ocular optical quality[ J]. Journal of Cataract and Refractive Surgery, 2004, 30(7): 1598–1599.

    [17] Benito A, Pérez G M, Mirabet S, et al. Objective optical assessment of tear-film quality dynamics in normal and mildly symptomatic dry eyes[J]. Journal of Cataract & Refractive Surgery, 2011, 37(8): 1481–1487.

    [18] Nanavaty M A, Stanford M R, Sharma R, et al. Use of the double- pass technique to quantify ocular scatter in patients with uveitis: A pilot study[J]. Ophthalmologica, 2011, 225(1): 61–66.

    [19] Pi ero D P, Ortiz D, Alio J L. Ocular scattering[J]. Optometry and Vision Science: Official Publication of the American Academy of Optometry, 2010, 87(9): E682–E96.

    [20] Artal P, Iglesias I, López-Gil N, et al. Double-pass measurements of the retinal-image quality with unequal entrance and exit pupil sizes and the reversibility of the eye’s optical system[J]. Journal of the Optical Society of America A, 1995, 12(10): 2358–2366.

    [21] Zhao J L. Objective assessment of ocular scatter and its influence on visual function[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2017.

    [22] Zhao J L, Xiao F, Kang J, et al. Quantifying intraocular scatter with near diffraction-limited double-pass point spread function[J]. Biomedical Optics Express, 2016, 7(11): 4595–4604.

    [23] Zhao J L, Xiao F, Zhao H X, et al. Effect of higher-order aberrations and intraocular scatter on contrast sensitivity measured with a single instrument[J]. Biomedical Optics Express, 2017, 8(4): 2138–2147.

    [24] Xiao F, Zhao J L, Zhao H X, et al. Deblurring adaptive optics retinal images using deep convolutional neural networks[J]. Biomedical Optics Express, 2017, 8(12): 5675–5687.

    CLP Journals

    [1] Wang Yuanyuan, He Yi, Wei Lin, Li Linxiao, Yang Jinsheng, Li Xiqi, Zhou Hong, Zhang Yudong. Analysis on fitting capability to human aberrations of bimorph deformable mirrors[J]. Opto-Electronic Engineering, 2018, 45(12): 180103

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Ocular aberrations manipulation with adaptive optics and its application[J]. Opto-Electronic Engineering, 2018, 45(3): 170703
    Download Citation