• Journal of Inorganic Materials
  • Vol. 36, Issue 10, 1067 (2021)
Mingxing FENG, Bin WANG, Pengyu XU, Bingtian TU, and Hao WANG*
Author Affiliations
  • State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
  • show less
    DOI: 10.15541/jim20210034 Cite this Article
    Mingxing FENG, Bin WANG, Pengyu XU, Bingtian TU, Hao WANG. Predicting Thermomechanical Properties of MgAl2O4 Transparent Ceramic Based on Bond Valence Models [J]. Journal of Inorganic Materials, 2021, 36(10): 1067 Copy Citation Text show less
    References

    [1] WEIGUO LI, FAN YANG, DAINING FANG. The temperature- dependent fracture strength model for ultra-high temperature ceramics. Acta Mechanica Sinica, 26, 235-239(2010).

    [2] TIANBAO CHENG, WEIGUO LI. The temperature-dependent ideal tensile strength of ZrB2, HfB2, and TiB2. Journal of the American Ceramic Society, 98, 190-196(2015).

    [3] RUZHUAN WANG, WEIGUO LI, DINGYU LI et al. A new temperature dependent fracture strength model for the ZrB2-SiC composites. Journal of the European Ceramic Society, 35, 2957-2962(2015).

    [4] YONG DENG, WEIGUO LI, JIXING SHAO et al. A novel theoretical model to predict the temperature-dependent fracture strength of ceramic materials. Journal of the European Ceramic Society, 37, 5071-5077(2017).

    [5] HAOMIN WANG, ZHANGYI HUANG, JIANQI QI et al. A new methodology to obtain the fracture toughness of YAG transparent ceramics. Journal of Advanced Ceramics, 8, 418-426(2019).

    [6] A ZERR, R RIEDEL, T SEKINE et al. Recent advances in new hard high-pressure nitrides. Advanced Materials, 18, 2933-2948(2006).

    [7] A GOLDSTEIN, A KRELL. Transparent ceramics at 50: progress made and further prospects. Journal of the American Ceramic Society, 99, 3173-3197(2016).

    [8] D BROWN I. Recent developments in the methods and applications of the bond valence model. Chemical Reviews, 109, 6858-6919(2009).

    [9] XIAO LIU, HAO WANG, B LAVINA et al. Chemical composition, crystal structure, and their relationships with the intrinsic properties of spinel-type crystals based on bond valences. Inorganic Chemistry, 53, 5986-5992(2014).

    [10] XIAO LIU, HAO WANG, WEIMIN WANG et al. Simple method for the hardness estimation of inorganic crystals by the bond valence model. Inorganic Chemistry, 55, 110-110(2016).

    [11] D BROWN I, A DABKOWSKI, A MCCLEARY. Thermal expansion of chemical bonds. Acta Crystallographica Section B: Structural Science, 53, 750-761(1997).

    [12] A REDFERN S, J HARRISON R, C O’NEILL H S et al. Thermodynamics and kinetics of cation ordering in MgAl2O4 spinel up to 1600 ℃ from in situ neutron diffraction. American Mineralogist, 84, 299-310(1999).

    [13] B MICHAEL. Handbook of Optics: Volume IV-Optical Properties of Materials, Nonlinear Optics, Quantum Optics, 3rd, 118-120(2010).

    [14] S SHORNIKOV. Thermodynamic properties of spinel MgAl2O4: a mass spectrometric study. Russian Journal of Physical Chemistry, 91, 287-294(2017).

    [15] J MECHOLSKY J, W FREIMAM S, W RICE R. Fracture surface analysis of ceramics. Journal of Materials Science, 11, 1310-1319(1976).

    [16] L STEWART R, C BRADT R. Fracture of polycrystalline MgAl2O4. Journal of the American Ceramic Society, 63, 619-623(1980).

    [17] A GHOSH, W WHITE K, G JENKINS M et al. Fracture-resistance of a transparent magnesium aluminate spinel. Journal of the American Ceramic Society, 74, 1624-1630(1991).

    [18] M BONIECKI, Z LIBRANT, T SADOWSKI et al. The Thermal Shock Resistance and Mechanical Properties at Elevated Temperature of Transparent Ceramics, 307-321(2012).

    [19] H CYNN, L ANDERSON O, M NICOL. Effects of cation disordering in a natural MgAl2O4 spinel observed by rectangular parallelepiped ultrasonic resonance and Raman measurements. Pure and Applied Geophysics, 141, 415-444(1993).

    [20] W WHITE K, P KELKAR G. Fracture mechanisms of a coarse- grained, transparent MgAl2O4 at elevated temperatures. Journal of the American Ceramic Society, 75, 3440-3444(1992).

    [21] C BRADT R. Fracture of single crystal MgAl2O4. Journal of Materials Science, 15, 67-72(1980).

    [22] P RICHET, G FIQUET. High-temperature heat capacity and premelting of minerals in the system MgO-CaO-Al2O3-SiO2. Journal of Geophysical Research Solid Earth, 96, 445-456(1991).

    [23] A LANDA Y, A NAUMOVA I. Determining the enthalpy and specific heat of magnesia spinels in the range 1400-2200 K. Refractories, 20, 335-337(1979).

    [24] R BONNICKSON K. High temperature heat contents of aluminates of calcium and magnesium. The Journal of Physical Chemistry, 59, 220-221(1955).

    [25] S CARBONIN, F MARTIGNAGO, G MENEGAZZO et al. X-ray single-crystal study of spinels: in situ heating. Physics and Chemistry of Minerals, 29, 503-514(2002).

    [26] B HALLSTEDT. Thermodynamic assessment of the system MgO-Al2O3. Journal of the American Ceramic Society, 75, 1497-1507(1992).

    [27] M SAKAI, C BRADT R, S KOBAYASHI A. The toughness of polycrystalline MgAl2O4. Journal of the Ceramic Society of Japan, 96, 525-531(1988).

    [28] C BAUDIN, R MARTINEZ, P PENA. High-temperature mechanical behavior of stoichiometric magnesium spinel. Journal of the American Ceramic Society, 78, 1857-1862(1995).

    [29] H MAEKAWA, S KATO, K KAWAMURA et al. Cation mixing in natural MgAl2O4 spinel: a high-temperature27Al NMR study. American Mineralogist, 82, 1125-1132(1997).

    [30] LU REN, HAO WANG, BINGTIAN TU et al. Theoretical study on composition- and pressure-dependent mechanical properties of AlON solid solution. Journal of the American Ceramic Society, 103, 4390-4401(2020).

    Mingxing FENG, Bin WANG, Pengyu XU, Bingtian TU, Hao WANG. Predicting Thermomechanical Properties of MgAl2O4 Transparent Ceramic Based on Bond Valence Models [J]. Journal of Inorganic Materials, 2021, 36(10): 1067
    Download Citation