• Chinese Journal of Quantum Electronics
  • Vol. 38, Issue 6, 838 (2021)
Shunyu YANG*, Haiqiang MA, and Zhenghua LI
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2021.06.012 Cite this Article
    YANG Shunyu, MA Haiqiang, LI Zhenghua. Comparative research on reference-frame-independent quantum key distribution with intensity fluctuations[J]. Chinese Journal of Quantum Electronics, 2021, 38(6): 838 Copy Citation Text show less
    References

    [1] Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing [C]. International Conference on Computer System and Signal Processing (IEEE), 1984: 175-179.

    [2] Lütkenhaus N. Security against individual attacks for realistic quantum key distribution [J]. Physical Review A, 2000, 61(5): 052304.

    [3] Lütkenhaus N, Jahma M. Quantum key distribution with realistic states: Photon-number statistics in the photon-number splitting attack [J]. New Journal of Physics, 2002, 4: 44.

    [4] Brassard G, Lütkenhaus N, Mor T, et al. Limitations on practical quantum cryptography [J]. Physical Review Letters, 2000, 85(6): 1330-1333.

    [5] Wang X B. Beating the photon-number-splitting attack in practical quantum cryptography [J]. Physical Review Letters, 2005, 94(23): 230503.

    [6] Hwang W Y. Quantum key distribution with high loss: Toward global secure communication [J]. Physical Review Letters, 2003, 91(5): 057901.

    [7] Lo H K, Ma X F, Chen K. Decoy state quantum key distribution [J]. Physical Review Letters, 2005, 94(23): 230504.

    [8] Zhang S L, Zou X B, Li C F, et al. A universal coherent source for quantum key distribution [J]. Chinese Science Bulletin, 2009, 54(11): 1863-1871.

    [9] Horikiri T, Kobayashi T. Decoy state quantum key distribution with a photon number resolved heralded single photon source [J]. Physical Review A, 2006, 73(3): 032331.

    [10] Mayers D. Unconditional security in quantum cryptography [J]. Journal of the ACM, 2001, 48(3): 351-406.

    [11] Lo H K, Chau H F. Unconditional security of quantum key distribution over arbitrarily long distances [J]. Science, 1999, 283(5410): 2050-2056.

    [12] Sha Y T, Feng B, Jia W, et al. A method to eliminate influence of fluctuation of light source on performance of quantum key distribution [J]. Chinese Journal of Quantum Electronics, 2020, 37(1): 57-62.

    [13] Wang X B, Peng C Z, Zhang J, et al. General theory of decoy-state quantum cryptography with source errors [J]. Physical Review A, 2008, 77(4): 042311.

    [14] Wang X B, Yang L, Peng C Z, et al. Decoy-state quantum key distribution with both source errors and statistical fluctuations [J]. New Journal of Physics, 2009, 11(7): 075006.

    [15] Wang S, Zhang S L, Li H W, et al. Decoy-state theory for the heralded single-photon source with intensity fluctuations [J]. Physical Review A, 2009, 79(6): 062309.

    [16] Makarov V. Controlling passively quenched single photon detectors by bright light [J]. New Journal of Physics, 2009, 11(6): 065003.

    [17] Makarov V, Anisimov A, Sauge S. Quantum hacking: Adding a commercial actively-quenched module to the list of single-photon detectors controllable by Eve [OL]. 2011, arXiv: 0809.3408.

    [18] Laing A, Scarani V, Rarity J G, et al. Reference-frame-independent quantum key distribution [J]. Physical Review A, 2010, 82(1): 012304.

    [19] Li X, Mao C C, Zhu J R, et al. Decoy-state reference-frame-independent quantum key distribution with the heralded pair-coherent source [J]. The European Physical Journal D, 2019, 73(5): 86.

    [20] Guo H, Li Z Y, Peng X. Quantum Cryptography [M]. Beijing: National Defense Industry Press, 2016.

    [21] Wang C. Theoretical Study on Reference Frame Independent Quantum Key Distribution with Source Flaws [D]. Changsha: National University of Defense Technology, 2015.

    [22] Yang S Y. Research of Practical Challenge During Quantum Communication Processing [D]. Beijing: Beijing University of Posts and Telecommunications, 2020.

    [23] Xu F H, Xu H, Lo H K. Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution [J]. Physical Review A, 2014, 89(5): 052333.

    YANG Shunyu, MA Haiqiang, LI Zhenghua. Comparative research on reference-frame-independent quantum key distribution with intensity fluctuations[J]. Chinese Journal of Quantum Electronics, 2021, 38(6): 838
    Download Citation