• Laser & Optoelectronics Progress
  • Vol. 54, Issue 9, 90601 (2017)
Liang Hongqin1、2、*, Liu Bin1、2, Chen Jia3, Liu Yunfeng1、2, and Hu Jinfeng1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/lop54.090601 Cite this Article Set citation alerts
    Liang Hongqin, Liu Bin, Chen Jia, Liu Yunfeng, Hu Jinfeng. High Sensitive Elliptic Side Core Surface Plasmon Resonance Refractive Index Sensing Characteristics Based on Dual-Core Photonic Crystal Fiber[J]. Laser & Optoelectronics Progress, 2017, 54(9): 90601 Copy Citation Text show less
    References

    [1] Xia Y N, Halas N J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures[J]. MRS Bulletin, 2005, 30(5): 338-348.

    [2] Shi Weihua, You Chengjie, Wu Jing. D-shaped photonic crystal fiber refractive index and temperature sensor based on surface plasmon resonance and directional coupling[J]. Acta Physica Sinica, 2015, 64(22): 224221.

    [3] Shi Weihua, Wu Jing. Photonic crystal fiber sensor based on surface plasmonic and directional resonance coupling[J]. Acta Optica Sinica, 2015, 35(2): 0206002.

    [4] Luo Yunhan, Mao Peiling, Chen Chaoying, et al. Side-polished fiber coupled plasmon resonance based on triangle nano-rod array[J]. Acta Photonica Sinica, 2015, 44(4): 0406004.

    [5] Chen Qianghua, Liu Jinghai, Luo Huifu, et al. Refractive index measurement system of liquid based on surface plasmon resonance[J]. Acta Optica Sinica, 2015, 35(5): 0512002.

    [6] Cheng Hui, Huang Zhaofeng, Duan Ziyuan. Advances in the application of SPR biosensors[J]. China Biotechnology, 2003, 23(5): 46-49.

    [7] Homola J. Electromagnetic theory of surface plasmons[M]. Berlin Heidelberg: Springer, 2006: 3-44.

    [8] Zhang Qianyun, Zeng Jie, Li Jifeng, et al. Study of prism surface plasmon resonance effect based on dielectric-aided layer[J]. Acta Physica Sinica, 2014, 63(3): 034207.

    [9] Patskovsky S, Kabashin A V, Meunier M, et al. Properties and sensing characteristics of surface-plasmon resonance in infrared light[J]. Journal of the Optical Society of America A, 2003, 20(8): 1644-1650.

    [10] Kasunic K J. Comparison of Kretschmann-Raether angular regimes for measuring changes in bulk refractive index[J]. Applied Optics, 2000, 39(1): 61-64.

    [11] Zhu J H, Huang X G, Tao J, et al. Nanometeric plasmonic refractive index senor[J]. Optics Communications, 2012, 285(13/14): 3242-3245.

    [12] Du W, Zhao F. Surface plasmon resonance based silicon carbide optical waveguide sensor[J]. Materials Letters, 2014, 115(15): 92-95.

    [13] Tang T T. Refractive index detection based on a prism-waveguide coupling system with double-negative material[J]. Optik -International Journal for Light and Electron Optics, 2013, 124(20): 4526-4528.

    [14] Mishra A K, Mishra S K, Gupta B D. SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region[J]. Optics Communications, 2015, 344: 86-91.

    [15] Shuai B B, Xia L, Zhang Y T, et al. A multi-core holey fiber based plasmonic sensor with large detection range and high linearity[J]. Optics Express, 2012, 20(6): 5974-5986.

    [16] Zhao Y, Deng Z Q, Li J. Photonic crystal fiber based surface plasmon resonance chemical sensors[J]. Sensors and Actuators B: Chemical, 2014, 202: 557-567.

    [17] Luan N N, Wang R, Lü W H, et al. Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core[J]. Optics Express, 2015, 23(7): 8576-8582.

    [18] Birks T A, Knight J C, Russell P S. Endlessly single-mode photonic crystal fiber[J]. Optics Letters, 1997, 22(13): 961-963.

    [19] Kim B Y, Blake J N, Huang S Y, et al. Use of highly elliptical core fibers for two-mode fiber devices[J]. Optics Letters, 1987, 12(9): 729-731.

    [20] Cao Ye, Li Rongmin, Tong Zhengrong. Investigation of a new kind of high birefringence photonic crystal fiber[J]. Acta Physica Sinica, 2013, 62(8): 084215.

    [21] Liu Xiaodong, Li Shuguang, Hou Lantian. The study of waveguide mode and dispersion property in photonic crystal fibres[J]. Acta Physica Sinica, 2003, 52(11): 2811-2817.

    [22] Wang Erlei, Jiang Haiming, Xie Kang, et al. Photonic crystal fibers with high nonlinearity, large birefringence and multiple zero dispersion-wavelength[J]. Acta Physica Sinica, 2014, 63(13): 134210.

    [23] Husakou A V, Herrmann J. Supercontinuum generation of higher-order solitons by fission in photonic crystalfibers[J]. Physical Review Letters, 2001, 87(20): 203901.

    [24] Liu Jie, Yang Changxi, Claire Gu, et al. A novel photonic crystal fiber with high nonlinearity and flattened dispersion[J]. Acta Optica Sinica, 2006, 26(10): 1569-1574.

    [25] Lei Jingli, Li Xiaoxiao, Wang Daobin, et al. Design and study on characteristics of double-clad photonic crystal fibers with flattened dispersion[J]. Acta Optica Sinica, 2015, 35(s1): s106002.

    [26] Jiang Linghong, Zheng Yi, Zheng Kai, et al. Investigation of a liquid-core photonic crystal fiber with high briefringence[J]. Acta Photonica Sinica, 2014, 43(9): 0906003.

    [27] Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection[J]. Zeitschrift für Physik A Hadrons and Nuclei, 1968, 216(4): 398-410.

    [28] Dash J N, Jha R. On the performance of graphene-based D shaped photonic crystal fibre biosensor using surface plasmon resonance[J]. Plasmonics, 2015, 10(5): 1123-1131.

    [29] Bing P B, Li Z Y, Yao J Q, et al. Effects of heterogeneity on the surface plasmon resonance biosensor based on three-hole photonic crystal fiber[J]. Optical Engineering, 2013, 52(5): 054401.

    [30] Akowuah E K, Gorman T, Ademgil H, et al. Numerical analysis of a photonic crystal fiber for biosensing applications[J]. IEEE Journal of Quantum Electronics, 2012, 48(11): 1403-1410.

    [31] Bing P B, Li Z Y, Yuan S, et al. Surface plasmon resonance biosensor based on large size square-lattice photonic crystal fiber[J]. Journal of Modern Optics, 2015, 63(8): 793-797.

    [32] Hassani A, Skorobogatiy M. Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics[J]. Optics Express, 2006, 14(24): 11616-11621.

    [33] Hassani A, Skorobogatiy M. Design criteria for microstructured-optical-fiber based surface-plasmon-resonance sensors[J]. Journal of the Optical Society of America B, 2007, 24(6): 1423-1429.

    [34] Hassani A, Skorobogatiy M. Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness[J]. Journal of the Optical Society of America B, 2009, 26(8): 1550-1557.

    [35] Rakic' A D, Djuriic' A B, Elazar J M, et al. Optical properties of metallic films for vertical-cavity optoelectronic devices[J]. Applied Optics, 1998, 37(22): 5271-5283.

    [36] Hautakorpi M, Mattinen M, Ludvigsen H. Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber[J]. Optics Express, 2008, 16(12): 8427-8432.

    CLP Journals

    [1] Han Chao, Qiu Chenyu, Hou Mengdi, Zhang Tingting, Wang Wenjie. Measurement of Liquid Refractive Index Based on Optofluidic Single Mode Laser[J]. Laser & Optoelectronics Progress, 2018, 55(8): 81401

    Liang Hongqin, Liu Bin, Chen Jia, Liu Yunfeng, Hu Jinfeng. High Sensitive Elliptic Side Core Surface Plasmon Resonance Refractive Index Sensing Characteristics Based on Dual-Core Photonic Crystal Fiber[J]. Laser & Optoelectronics Progress, 2017, 54(9): 90601
    Download Citation