• Laser & Optoelectronics Progress
  • Vol. 56, Issue 3, 031009 (2019)
Jing Yue**, Guojun Liu*, and Hao Fu
Author Affiliations
  • School of Mathematics & Statistics, Ningxia University, Yinchuan, Ningxia 750021, China
  • show less
    DOI: 10.3788/LOP56.031009 Cite this Article Set citation alerts
    Jing Yue, Guojun Liu, Hao Fu. Color Image Quality Assessment Based on Quaternion Spectral Residual[J]. Laser & Optoelectronics Progress, 2019, 56(3): 031009 Copy Citation Text show less
    Schematic of color imageconvert to a pure quaternion matrix
    Fig. 1. Schematic of color imageconvert to a pure quaternion matrix
    Quaternion gradient maps of color images. (a) Color images; (b) corresponding quaternion gradient maps of (a); (c) color images; (d) corresponding quaternion gradient maps of (c)
    Fig. 2. Quaternion gradient maps of color images. (a) Color images; (b) corresponding quaternion gradient maps of (a); (c) color images; (d) corresponding quaternion gradient maps of (c)
    Flowchart of QSR-SIM algorithm
    Fig. 3. Flowchart of QSR-SIM algorithm
    Regression curves of different image quality evaluation algorithms in TID2013. (a) SSIM; (b) FISM; (c) MS-GMSDc; (d) QSSIM; (e) SR-SIM; (f) QSR-SIM
    Fig. 4. Regression curves of different image quality evaluation algorithms in TID2013. (a) SSIM; (b) FISM; (c) MS-GMSDc; (d) QSSIM; (e) SR-SIM; (f) QSR-SIM
    Reference image and its distortion images of different types. (a) Reference image I07; (b) I07_11_5; (c) I07_12_4; (d) I07_15_3; (e) I07_17_4; (f) I07_24_5
    Fig. 5. Reference image and its distortion images of different types. (a) Reference image I07; (b) I07_11_5; (c) I07_12_4; (d) I07_15_3; (e) I07_17_4; (f) I07_24_5
    AlgorithmI07_11_5I07_12_4I07_15_3I07_17_4I07_24_5
    Subjective score0.97732.86363.04556.72730.4762
    QSR-SIM0.97010.99190.99680.99760.9691
    VSI[4]0.89640.96100.96140.98680.8875
    SR-SIM[3]0.82830.93170.96360.98030.8056
    FSIM[5]0.72030.91500.96100.96210.7137
    SSIM[21]0.59220.72080.96830.95160.6019
    VSNR[23]8.756115.023712.22311.32398.6929
    PSNR[24]23.000726.174327.201425.083623.0449
    GMSD[25]0.24180.12150.12910.02590.2622
    Table 1. Results of five kinds of distorted pictures of reference image I07 in different evaluation algorithm experiments
    AlgorithmI07_11_5I07_12_4I07_15_3I07_17_4I07_24_5
    Subjective score43215
    QSR-SIM43215
    VSI43215
    SR-SIM43215
    FSIM43215
    SSIM53124
    VSNR41235
    PSNR52134
    GMSD42315
    Table 2. Ranking of different evaluation algorithms
    DatabaseTime /s
    QSSIMQSR-SIM
    I17_11_21.11240.7474
    TID2013520485
    Table 3. Comparison of time complexity of algorithms
    DatabaseParameterPSNRSSIMFSIMGMSDMS-GMSDSR-SIMQSR-SIM
    TID2013SROCC0.68690.74170.80150.80300.81390.80730.8169
    KROCC0.49580.55880.62890.63520.64670.64040.6268
    PLCC0.67480.78950.85890.85750.86180.79700.8413
    RMSE0.91490.76080.63490.47620.62880.61930.6701
    CSIQSROCC0.80580.87560.92420.95150.95450.93190.9435
    KROCC0.60840.69070.75670.80210.80750.77250.7821
    PLCC0.80000.86130.91200.94530.95120.92500.8049
    RMSE0.15750.13340.10770.08560.08100.09970.1618
    Table 4. Comparison of various color image quality assessment methods' performance
    DatabaseDistortiontypeMS-SSIM[26]SSIM_I[27]SSIMIFC[28]VSNRIW-SSIMFSIMSR-SIMVSIQSR-SIM
    TID2013AGN0.86460.86270.86710.66120.82710.84380.89730.92530.94600.9138
    ANC0.77300.77630.77260.53520.73050.75150.82080.85700.87050.8111
    SCN0.85440.85050.85150.66010.80130.81670.87500.92250.93670.8900
    MN0.80730.78950.77670.69320.70720.80200.79440.78600.76970.7036
    HFN0.86040.86880.86340.74060.84550.85530.89840.91320.92000.9042
    IN0.76290.78960.75030.64080.73630.72810.80720.82770.87410.7885
    QN0.87060.84110.86570.62820.83570.84680.87190.85020.87480.8626
    GB0.96730.97240.96680.89070.94700.97010.95510.96200.96120.9118
    DEN0.92680.92960.92540.77790.90810.91520.93020.94030.94840.9366
    JPEG0.92650.92270.92000.83570.90080.91870.93240.93860.95410.9219
    JP2K0.95040.95750.94680.90780.92730.95060.95770.96740.97060.9522
    JGTE0.84750.85810.84930.74250.79080.83880.84640.85430.92160.7764
    J2TE0.88890.88560.88280.77690.84070.86560.89130.91660.92280.8355
    NEPN0.79680.78850.78210.57370.66530.80110.79170.79750.80600.8141
    Block0.48010.45630.57200.24140.17710.37170.54890.47310.17130.5545
    MS0.79060.78450.77520.55220.48710.78330.75310.65760.77000.7762
    CTC0.46340.38000.37750.17980.33200.45930.46860.47050.47540.4671
    CCS0.40990.42080.41410.40290.36770.41960.27480.20530.81000.5359
    MGN0.77860.80920.78030.61430.76440.77280.84690.87780.91170.8110
    CN0.85280.87110.85660.81600.86830.87620.91210.92630.92430.9084
    LCNI0.90680.91730.90570.81800.88210.90370.94660.96080.95640.9406
    ICQD0.85550.83510.85420.60060.86670.84010.87600.88030.88390.8795
    CHA0.87840.87710.87750.82100.86450.86820.87150.87540.89060.8494
    SSR0.94830.94880.94610.88850.93390.94740.95650.96140.96280.9625
    Table 5. SROCC values for different distortion types for various evaluation algorithms in the TID2013 database
    Jing Yue, Guojun Liu, Hao Fu. Color Image Quality Assessment Based on Quaternion Spectral Residual[J]. Laser & Optoelectronics Progress, 2019, 56(3): 031009
    Download Citation