• Ultrafast Science
  • Vol. 2, Issue 1, 9842716 (2022)
Jintai Liang1, Yueming Zhou1、*, Yijie Liao1, Wei-Chao Jiang2, Min Li1, and Peixiang Lu1、3
Author Affiliations
  • 1School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 3Optics Valley Laboratory, Hubei 430074, China
  • show less
    DOI: 10.34133/2022/9842716 Cite this Article
    Jintai Liang, Yueming Zhou, Yijie Liao, Wei-Chao Jiang, Min Li, Peixiang Lu. Direct Visualization of Deforming Atomic Wavefunction in Ultraintense High-Frequency Laser Pulses[J]. Ultrafast Science, 2022, 2(1): 9842716 Copy Citation Text show less
    References

    [1] Y. A. Il’inskii, and L. V. KeldyshElectromagnetic Response of Material Media, 1994.

    [2] E. A. Volkova, A. M. Popov, and O. V. Tikhonova, “Nonlinear polarization response of an atomic gas medium in the field of a high-intensity femtosecond laser pulse,” JETP Letters, vol. 94, no. 7, pp. 519–524, 2011.

    [3] F. Krausz, and M. I. Stockman, “Attosecond metrology: from electron capture to future signal processing,” Nature Photonics, vol. 8, no. 3, pp. 205–213, 2014.

    [4] E. Goulielmakis, Z. Loh, A. Wirth, R. Santra, N. Rohringer, V. S. Yakovlev, S. Zherebtsov, T. Pfeifer, A. M. Azzeer, M. F. Kling, S. R. Leone, and F. Krausz, “Real-time observation of valence electron motion,” Nature (London), vol. 466, no. 7307, pp. 739–743, 2010.

    [5] M. Chini, B. Zhao, H. Wang, Y. Cheng, S. Hu, and Z. Chang, “Subcycle ac stark shift of helium excited states probed with isolated attosecond pulses,” Physical Review Letters, vol. 109, no. 7, article 073601, 2012.

    [6] M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature, vol. 530, no. 7588, pp. 66–70, 2016.

    [7] P. Kraus, B. Mignolet, D. Baykusheva, A. Rupenyan, L. Horny, E. F. Penka, G. Grassi, O. I. Tolstikhin, J. Schneider, F. Jensen, and L. B. Madsen, “Measurement and laser control of attosecond charge migration in ionized iodoacetylene,” Science, vol. 350, no. 6262, pp. 790–795, 2015.

    [8] M. Pont, N. R. Walet, M. Gavrila, and C. W. McCurdy, “Dichotomy of the hydrogen atom in superintense high-frequency laser fields,” Physical Review Letters, vol. 61, no. 8, pp. 939–942, 1988.

    [9] M. Gavrila, “Atomic stabilization in superintense laser fields,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 35, no. 18, pp. R147–R193, 2002.

    [10] A. M. Popov, O. V. Tikhonova, and E. A. Volkova, “Strong-field atomic stabilization: numerical simulation and analytical modelling,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 36, no. 10, pp. R125–R165, 2003.

    [11] Q. Wei, P. Wang, S. Kais, and D. Herschbach, “Pursuit of the Kramers-Henneberger atom,” Chemical Physics Letters, vol. 683, pp. 240–246, 2017.

    [12] M. Pont, and M. Gavrila, “Stabilization of atomic hydrogen in superintense high-frequency laser fields of circular polarization,” Physical Review Letters, vol. 65, no. 19, pp. 2362–2365, 1990.

    [13] U. Eichmann, T. Nubbemeyer, H. Rottke, and W. Sandner, “Acceleration of neutral atoms in strong short-pulse laser fields,” Nature (London), vol. 461, no. 7268, pp. 1261–1264, 2009.

    [14] M. Richter, S. Patchkovskii, F. Morales, O. Smirnova, and M. Ivanov, “The role of the Kramers-Henneberger atom in the higher-order Kerr effect,” New Journal of Physics, vol. 15, no. 8, article 083012, 2013.

    [15] M. Matthews, F. Morales, A. Patas, A. Lindinger, J. Gateau, N. Berti, S. Hermelin, J. Kasparian, M. Richter, T. Bredtmann, O. Smirnova, J. P. Wolf, and M. Ivanov, “Amplification of intense light fields by nearly free electrons,” Nature Physics, vol. 14, no. 7, pp. 695–700, 2018.

    [16] Q. Su, J. H. Eberly, and J. Javanainen, “Dynamics of atomic ionization suppression and electron localization in an intense high-frequency radiation field,” Physical Review Letters, vol. 64, no. 8, pp. 862–865, 1990.

    [17] J. Grochmalicki, M. Lewenstein, and K. Rzyzewski, “Stabilization of atoms in superintense laser fields: is it real,” Physical Review Letters, vol. 66, no. 8, pp. 1038–1041, 1991.

    [18] K. C. Kulander, K. J. Schafer, and J. L. Krause, “Dynamic stabilization of hydrogen in an intense high-frequency pulsed laser field,” Physical Review Letters, vol. 66, no. 20, pp. 2601–2604, 1991.

    [19] K. Burnett, P. L. Knight, B. R. M. Piraux, and V. C. Reed, “Supression of ionization in strong laser fields,” Physical Review Letters, vol. 66, no. 3, pp. 301–304, 1991.

    [20] V. C. Reed, P. L. Knight, and K. Burnett, “Suppression of ionization in superintense fields without dichotomy,” Physical Review Letters, vol. 67, no. 11, pp. 1415–1418, 1991.

    [21] J. H. Eberly, and K. C. Kulander, “Atomic stabilization by super-intense lasers,” Science, vol. 262, no. 5137, pp. 1229–1233, 1993.

    [22] M. Y. Ryabikin, and A. M. Sergeev, “Stabilization window and attosecond pulse train production at atom ionization in superintense laser field,” Optics Express, vol. 7, no. 12, pp. 417–426, 2000.

    [23] F. Morales, M. Richter, S. Patchkovskii, and O. Smirnova, “Imaging the Kramers–Henneberger atom,” Proceedings of the National Academy of Sciences, vol. 108, no. 41, pp. 16906–16911, 2011.

    [24] P. He, Z. Zhang, and F. He, “Young’s double-slit interference in a hydrogen atom,” Physical Review Letters, vol. 124, no. 16, article 163201, 2020.

    [25] K. Toyota, U. Saalmann, and J. M. Rost, “The envelope Hamiltonian for electron interaction with ultrashort pulses,” New Journal of Physics, vol. 17, no. 7, article 073005, 2015.

    [26] Q. Su, and J. H. Eberly, “Suppression of ionization and atomic electron localization by short intense laser pulses,” Physical Review A, vol. 43, no. 5, pp. 2474–2479, 1991.

    [27] N. J. Kylstra, R. A. Worthington, A. Patel, P. L. Knight, J. R. Vázquez de Aldana, and L. Roso, “Breakdown of stabilization of atoms interacting with intense, high-frequency laser pulses,” Physical Review Letters, vol. 85, no. 9, pp. 1835–1838, 2000.

    [28] K. Toyota, O. I. Tolstikhin, T. Morishita, and S. Watanabe, “Slow electrons generated by intense high-frequency laser pulses,” Physical Review Letters, vol. 103, no. 15, article 153003, 2009.

    [29] Q. Ning, U. Saalmann, and J. M. Rost, “Electron dynamics driven by light-pulse derivatives,” Physical Review Letters, vol. 120, no. 3, article 033203, 2018.

    [30] J. Liang, W. Jiang, Y. Liao, Q. Ke, M. Yu, M. Li, Y. Zhou, and P. Lu, “Intensity-dependent angular distribution of low-energy electrons generated by intense high-frequency laser pulse,” Optics Express, vol. 29, no. 11, pp. 16639–16651, 2021.

    [31] L. Geng, H. Liang, K. Krajewska, L. Y. Peng, and Q. Gong, “Laser-induced electron Fresnel diffraction by XUV pulses at extreme intensity,” Physical Review A, vol. 104, no. 2, p. L021102, 2021.

    [32] Y. Huismans, A. Rouzée, A. Gijsbertsen, J. Jungmann, A. Smolkowska, P. S. W. M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker, G. Berden, B. Redlich, A. F. G. van der Meer, H. G. Muller, W. Vermin, K. J. Schafer, M. Spanner, M. Y. Ivanov, O. Smirnova, D. Bauer, S. V. Popruzhenko, and M. J. J. Vrakking, “Time-resolved holography with photoelectrons,” Science, vol. 331, no. 6013, pp. 61–64, 2011.

    [33] X. Bian, Y. Huismans, O. Smirnova, K. J. Yuan, M. J. J. Vrakking, and A. D. Bandrauk, “Subcycle interference dynamics of time-resolved photoelectron holography with midinfrared laser pulses,” Physical Review A, vol. 84, no. 4, article 043420, 2011.

    [34] Y. Zhou, O. I. Tolstikhin, and T. Morishita, “Near-forward rescattering photoelectron holography in strong-field ionization: extraction of the phase of the scattering amplitude,” Physical Review Letters, vol. 116, no. 17, article 173001, 2016.

    [35] D. Hickstein, P. Ranitovic, S. Witte, X. Tong, Y. Huismans, P. Arpin, X. Zhou, K. E. Keister, C. W. Hogle, B. Zhang, C. Ding, P. Johnsson, N. Toshima, M. J. J. Vrakking, M. M. Murnane, and H. C. Kapteyn, “Direct visualization of laser-driven electron multiple scattering and tunneling distance in strong-field ionization,” Physical Review Letters, vol. 109, no. 7, article 073004, 2012.

    [36] M. Meckel, A. Staudte, S. Patchkovskii, D. Villeneuve, P. Corkum, R. Dörner, and M. Spanner, “Signatures of the continuum electron phase in molecular strong-field photoelectron holography,” Nature Physics, vol. 10, no. 8, pp. 594–600, 2014.

    [37] D. G. Arbó, C. Lemell, S. Nagele, N. Camus, L. Fechner, A. Krupp, T. Pfeifer, S. D. López, R. Moshammer, and J. Burgdörfer, “Ionization of argon by two-color laser pulses with coherent phase control,” Physical Review A, vol. 92, no. 2, article 023402, 2015.

    [38] S. Walt, N. Ram, M. Atala, N. Shvetsov-Shilovski, A. vonConta, D. Baykusheva, M. Lein, and H. Wörner, “Dynamics of valence-shell electrons and nuclei probed by strong-field holography and rescattering,” Nature Communications, vol. 8, no. 1, article 15651, 2017.

    [39] G. Porat, G. Alon, S. Rozen, O. Pedatzur, M. Krger, D. Azoury, A. Natan, G. Orenstein, B. D. Bruner, M. J. Vrakking, and N. Dudovich, “Attosecond time-resolved photoelectron holography,” Nature Communications, vol. 9, no. 1, p. 2805, 2018.

    [40] M. Li, H. Xie, W. Cao, S. Luo, J. Tan, Y. Feng, B. du, W. Zhang, Y. Li, Q. Zhang, P. Lan, Y. Zhou, and P. Lu, “Photoelectron holographic interferometry to probe the longitudinal momentum offset at the tunnel exit,” Physical Review Letters, vol. 122, no. 18, article 183202, 2019.

    [41] J. Tan, S. Xu, X. Han, Y. Zhou, M. Li, W. Cao, Q. Zhang, and P. Lu, “Resolving and weighing the quantum orbits in strong-field tunneling ionization,” Advanced Photonics, vol. 3, article 035001, 2021.

    [42] M. Liu, M. Li, C. Wu, Q. Gong, A. Staudte, and Y. Liu, “Phase structure of strong-field tunneling wave packets from molecules,” Physical Review Letters, vol. 116, no. 16, article 163004, 2016.

    [43] W. Yang, H. Zhang, C. Lin, J. Xu, Z. Sheng, X. Song, S. Hu, and J. Chen, “Momentum mapping of continuum-electron wave-packet interference,” Physical Review A, vol. 94, no. 4, article 043419, 2016.

    [44] X. Lai, S. Yu, Y. Huang, L. Hua, C. Gong, W. Quan, C. Faria, and X. Liu, “Near-threshold photoelectron holography beyond the strong-field approximation,” Physical Review A, vol. 96, no. 1, article 013414, 2017.

    [45] Q. Xia, J. Tao, J. Cai, L. Fu, and J. Liu, “Quantum interference of glory rescattering in strong-field atomic ionization,” Physical Review Letters, vol. 121, no. 14, article 143201, 2018.

    [46] B. Willenberg, J. Maurer, U. Keller, J. Daněk, M. Klaiber, N. Teeny, K. Z. Hatsagortsyan, and C. H. Keitel, “Holographic interferences in strong-field ionization beyond the dipole approximation: the influence of the peak and focal-volume-averaged laser intensities,” Physical Review A, vol. 100, article 033417, 2019.

    [47] S. Brennecke, N. Eicke, and M. Lein, “Gouy’s phase anomaly in electron waves produced by strong-field ionization,” Physical Review Letters, vol. 124, no. 15, article 153202, 2020.

    [48] N. Werby, A. Natan, R. Forbes, and P. H. Bucksbaum, “Disentangling the subcycle electron momentum spectrum in strong-field ionization,” Physical Review Research, vol. 3, no. 2, article 023065, 2021.

    [49] M. He, Y. Li, Y. Zhou, M. Li, W. Cao, and P. Lu, “Direct visualization of valence electron motion using strong-field photoelectron holography,” Physical Review Letters, vol. 120, no. 13, article 133204, 2018.

    [50] J. Tan, Y. Zhou, M. He, Y. Chen, Q. Ke, J. Liang, X. Zhu, M. Li, and P. Lu, “Determination of the ionization time using attosecond photoelectron interferometry,” Physical Review Letters, vol. 121, no. 25, article 253203, 2018.

    [51] H. A. Kramers, “Collected Scientific Papers (North-Holland, Amsterdam, 1956)WC. Henneberger,” Physical Review Letters, vol. 21, p. 838, 1968.

    [52] K. Toyota, O. I. Tolstikhin, T. Morishita, and S. Watanabe, “Siegert-state expansion in the Kramers-Henneberger frame: interference substructure of above-threshold ionization peaks in the stabilization regime,” Physical Review A, vol. 76, no. 4, article 043418, 2007.

    [53] O. I. Tolstikhin, and T. Morishita, “Adiabatic theory of ionization by intense laser pulses: finite-range potentials,” Physical Review A, vol. 86, no. 4, article 043417, 2012.

    [54] P. Batishchev, O. I. Tolstikhin, and T. Morishita, “Atomic Siegert states in an electric field: transverse momentum distribution of the ionized electrons,” Physical Review A, vol. 82, no. 2, article 023416, 2010.

    [55] M. Ivanov, M. Spanner, and O. Smirnova, “Anatomy of strong field ionization,” Journal of Modern Optics, vol. 52, no. 2-3, pp. 165–184, 2005.

    [56] R. Murray, W. K. Liu, and M. Y. Ivanov, “Partial Fourier-transform approach to tunnel ionization: atomic systems,” Physical Review A, vol. 81, no. 2, article 023413, 2010.

    [57] S. Eckart, “Holographic angular streaking of electrons and the Wigner time delay,” Phys. Rev. Research, vol. 2, no. 3, article 033248, 2020.

    [58] D. Trabert, S. Brennecke, K. Fehre, N. Anders, A. Geyer, S. Grundmann, M. S. Schöffler, L. P. Schmidt, T. Jahnke, R. Dörner, and M. Kunitski, “Angular dependence of the Wigner time delay upon tunnel ionization of H2,” Nature Communications, vol. 12, p. 1697, 2021.

    [59] C. Faria, and A. Maxwell, “It is all about phases: ultrafast holographic photoelectron imaging,” Reports on Progress in Physics, vol. 83, no. 3, article 034401, 2020.

    Jintai Liang, Yueming Zhou, Yijie Liao, Wei-Chao Jiang, Min Li, Peixiang Lu. Direct Visualization of Deforming Atomic Wavefunction in Ultraintense High-Frequency Laser Pulses[J]. Ultrafast Science, 2022, 2(1): 9842716
    Download Citation