• Journal of Semiconductors
  • Vol. 44, Issue 1, 011001 (2023)
Hua Li1, Jinyang Ling1, Jiamin Lin1, Xin Lu2, and Weigao Xu1、*
Author Affiliations
  • 1Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
  • 2Department of Physics and Engineering Physics, Tulane University, New Orleans, USA
  • show less
    DOI: 10.1088/1674-4926/44/1/011001 Cite this Article
    Hua Li, Jinyang Ling, Jiamin Lin, Xin Lu, Weigao Xu. Interface engineering in two-dimensional heterostructures towards novel emitters[J]. Journal of Semiconductors, 2023, 44(1): 011001 Copy Citation Text show less
    References

    [1] R Rossetti, S Nakahara, L E Brus. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J Chem Phys, 79, 1086(1983).

    [2] L E Brus. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J Chem Phys, 80, 4403(1984).

    [3] C Chang, W Chen, Y Chen et al. Recent progress on two-dimensional materials. Acta Phys Chim Sinica, 37, 2108017(2021).

    [4] F C Wu, F Y Qu, A H MacDonald. Exciton band structure of monolayer MoS2. Phys Rev B, 91, 075310(2015).

    [5] A Ramasubramaniam. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys Rev B, 86, 115409(2012).

    [6] H Heo, J H Sung, S Cha et al. Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks. Nat Commun, 6, 7372(2015).

    [7] L Wang, I Meric, P Y Huang et al. One-dimensional electrical contact to a two-dimensional material. Science, 342, 614(2013).

    [8] K Kim, M Yankowitz, B Fallahazad et al. Van der waals heterostructures with high accuracy rotational alignment. Nano Lett, 16, 1989(2016).

    [9] R Frisenda, E Navarro-Moratalla, P Gant et al. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem Soc Rev, 47, 53(2018).

    [10] Y Wang, Z Wang, W Yao et al. Interlayer coupling in commensurate and incommensurate bilayer structures of transition-metal dichalcogenides. Phys Rev B, 95, 115429(2017).

    [11] E C Regan, D Q Wang, E Y Paik et al. Emerging exciton physics in transition metal dichalcogenide heterobilayers. Nat Rev Mater, 7, 778(2022).

    [12] A K Geim, I V Grigorieva. Van der waals heterostructures. Nature, 499, 419(2013).

    [13] K F Mak, C G Lee, J Hone et al. Atomically thin MoS2: A new direct-gap semiconductor. Phys Rev Lett, 105, 136805(2010).

    [14] A Splendiani, L Sun, Y B Zhang et al. Emerging photoluminescence in monolayer MoS2. Nano Lett, 10, 1271(2010).

    [15] D Xiao, G B Liu, W X Feng et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys Rev Lett, 108, 196802(2012).

    [16] X D Xu, W Yao, D Xiao et al. Spin and pseudospins in layered transition metal dichalcogenides. Nat Phys, 10, 343(2014).

    [17] W J Li, X Lu, J T Wu et al. Optical control of the valley Zeeman effect through many-exciton interactions. Nat Nanotechnol, 16, 148(2021).

    [18] A Chernikov, T C Berkelbach, H M Hill et al. Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2. Phys Rev Lett, 113, 076802(2014).

    [19] T C Berkelbach, M S Hybertsen, D R Reichman et al. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys Rev B, 88, 045318(2013).

    [20] W Yao, D Xiao, Q Niu. Valley-dependent optoelectronics from inversion symmetry breaking. Phys Rev B, 77, 235406(2008).

    [21] D Xiao, W Yao, Q Niu. Valley-contrasting physics in graphene: Magnetic moment and topological transport. Phys Rev Lett, 99, 236809(2007).

    [22] K Kośmider, J W González, J Fernández-Rossier. Large spin splitting in the conduction band of transition metal dichalcogenide monolayers. Phys Rev B, 88, 245436(2013).

    [23] J P Echeverry, B Urbaszek, T Amand et al. Splitting between bright and dark excitons in transition metal dichalcogenide monolayers. Phys Rev B, 93, 121107(2016).

    [24] G Berghäuser, P Steinleitner, P Merkl et al. Mapping of the dark exciton landscape in transition metal dichalcogenides. Phys Rev B, 98, 020301(2018).

    [25] P Merkl, F Mooshammer, P Steinleitner et al. Ultrafast transition between exciton phases in van der Waals heterostructures. Nat Mater, 18, 691(2019).

    [26] K H Liu, L M Zhang, T Cao et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat Commun, 5, 4966(2014).

    [27] A M van der Zande, J Kunstmann, A Chernikov et al. Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett, 14, 3869(2014).

    [28] L Meckbach, T Stroucken, S W Koch. Influence of the effective layer thickness on the ground-state and excitonic properties of transition-metal dichalcogenide systems. Phys Rev B, 97, 035425(2018).

    [29] J Horng, T Stroucken, L Zhang et al. Observation of interlayer excitons in MoSe2 single crystals. Phys Rev B, 97, 241404(2018).

    [30] A Arora, M Drüppel, R Schmidt et al. Interlayer excitons in a bulk van der Waals semiconductor. Nat Commun, 8, 639(2017).

    [31] K Kośmider, J Fernández-Rossier. Electronic properties of the MoS2-WS2 heterojunction. Phys Rev B, 87, 075451(2013).

    [32] C X Zhang, C Gong, Y F Nie et al. Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in Van der Waals heterostructures. 2D Mater, 4, 015026(2016).

    [33] Y F Chen, J Y Xi, D O Dumcenco et al. Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. ACS Nano, 7, 4610(2013).

    [34] C Gong, H J Zhang, W H Wang et al. Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors. Appl Phys Lett, 103, 053513(2013).

    [35] X P Hong, J Kim, S F Shi et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat Nanotechnol, 9, 682(2014).

    [36] W G Xu, W W Liu, J F Schmidt et al. Correlated fluorescence blinking in two-dimensional semiconductor heterostructures. Nature, 541, 62(2017).

    [37] H Fang, C Battaglia, C Carraro et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc Natl Acad Sci USA, 111, 6198(2014).

    [38] E S Kadantsev et al. Electronic structure of a single MoS2 monolayer. Solid State Commun, 152, 909(2012).

    [39] H Li, H L Li, X Z Wang et al. Spontaneous polarity flipping in a 2D heterobilayer induced by fluctuating interfacial carrier flows. Nano Lett, 21, 6773(2021).

    [40] J Xia, J X Yan, Z H Wang et al. Strong coupling and pressure engineering in WSe2–MoSe2 heterobilayers. Nat Phys, 17, 92(2021).

    [41] H P Komsa, A V Krasheninnikov. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles. Phys Rev B, 88, 085318(2013).

    [42] H M Zhu, J Wang, Z Z Gong et al. Interfacial charge transfer circumventing momentum mismatch at two-dimensional van der waals heterojunctions. Nano Lett, 17, 3591(2017).

    [43] Y Zeng, W Dai, R D Ma et al. Distinguishing ultrafast energy transfer in atomically thin MoS2/WS2 heterostructures. Small, 18, e2204317(2022).

    [44] Z Hu, X Liu, P L Hernández-Martínez et al. Interfacial charge and energy transfer in van der Waals heterojunctions. InfoMat, 4, e12290(2022).

    [45] D Kozawa, A Carvalho, I Verzhbitskiy et al. Evidence for fast interlayer energy transfer in MoSe2/WS2 heterostructures. Nano Lett, 16, 4087(2016).

    [46] L L Wu, Y Z Chen, H Z Zhou et al. Ultrafast energy transfer of both bright and dark excitons in 2D van der waals heterostructures beyond dipolar coupling. ACS Nano, 13, 2341(2019).

    [47] H Z Zhou, Y D Zhao, W J Tao et al. Controlling exciton and valley dynamics in two-dimensional heterostructures with atomically precise interlayer proximity. ACS Nano, 14, 4618(2020).

    [48] Z H Hu, P L Hernández-Martínez, X Liu et al. Trion-mediated Förster resonance energy transfer and optical gating effect in WS2/hBN/MoSe2 heterojunction. ACS Nano, 14, 13470(2020).

    [49] S K Lyo. Energy transfer from an electron-hole plasma layer to a quantum well in semiconductor structures. Phys Rev B, 81, 115303(2010).

    [50] R A Marcus. Chemical and electrochemical electron-transfer theory. Annu Rev Phys Chem, 15, 155(1964).

    [51] R A Marcus et al. Electron transfers in chemistry and biology. Biochim Biophys Acta Rev Bioenerg, 811, 265(1985).

    [52] Z H Ji, H Hong, J Zhang et al. Robust stacking-independent ultrafast charge transfer in MoS2/WS2 bilayers. ACS Nano, 11, 12020(2017).

    [53] X Y Zhu, N R Monahan, Z Z Gong et al. Charge transfer excitons at van der waals interfaces. J Am Chem Soc, 137, 8313(2015).

    [54] R H Godiksen, S J Wang, T V Raziman et al. Correlated exciton fluctuations in a two-dimensional semiconductor on a metal. Nano Lett, 20, 4829(2020).

    [55] P Merkl, F Mooshammer, S Brem et al. Twist-tailoring Coulomb correlations in van der Waals homobilayers. Nat Commun, 11, 2167(2020).

    [56] K Wu, H X Zhong, Q B Guo et al. Identification of twist-angle-dependent excitons in WS2/WSe2 heterobilayers. Natl Sci Rev, 9, nwab135(2021).

    [57] Q J Zheng, W A Saidi, Y Xie et al. Phonon-assisted ultrafast charge transfer at van der waals heterostructure interface. Nano Lett, 17, 6435(2017).

    [58] K Wang, B Huang, M K Tian et al. Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy. ACS Nano, 10, 6612(2016).

    [59] P Rivera, J R Schaibley, A M Jones et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat Commun, 6, 6242(2015).

    [60] A Raja, A Chaves, J Yu et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat Commun, 8, 15251(2017).

    [61] L Waldecker, A Raja, M Rösner et al. Rigid band shifts in two-dimensional semiconductors through external dielectric screening. Phys Rev Lett, 123, 206403(2019).

    [62] M Amani, D H Lien, D Kiriya et al. Near-unity photoluminescence quantum yield in MoS2. Science, 350, 1065(2015).

    [63] D H Lien, S Z Uddin, M Yeh et al. Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science, 364, 468(2019).

    [64] H Kim, S Z Uddin, N Higashitarumizu et al. Inhibited nonradiative decay at all exciton densities in monolayer semiconductors. Science, 373, 448(2021).

    [65] Z Y Zhu, Y C Cheng, U Schwingenschlögl. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys Rev B, 84, 153402(2011).

    [66] G B Liu, D Xiao, Y G Yao et al. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem Soc Rev, 44, 2643(2015).

    [67] W J Zhao, Z Ghorannevis, L Q Chu et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano, 7, 791(2013).

    [68] H L Zeng, G B Liu, J F Dai et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci Rep, 3, 1608(2013).

    [69] J A Wilson, A D Yoffe. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys, 18, 193(1969).

    [70] A Arora, M Koperski, K Nogajewski et al. Excitonic resonances in thin films of WSe2: From monolayer to bulk material. Nanoscale, 7, 10421(2015).

    [71] D Kozawa, R Kumar, A Carvalho et al. Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides. Nat Commun, 5, 4543(2014).

    [72] M S Kim, C Seo, H Kim et al. Simultaneous hosting of positive and negative trions and the enhanced direct band emission in MoSe2/MoS2 heterostacked multilayers. ACS Nano, 10, 6211(2016).

    [73] M A Lampert. Mobile and immobile effective-mass-particle complexes in nonmetallic solids. Phys Rev Lett, 1, 450(1958).

    [74] K Kheng, R T Cox, D A My et al. Observation of negatively charged excitons X- in semiconductor quantum wells. Phys Rev Lett, 71, 1752(1993).

    [75] G Finkelstein, H Shtrikman. Optical spectroscopy of a two-dimensional electron gas near the metal-insulator transition. Phys Rev Lett, 74, 976(1995).

    [76] J S Ross, S F Wu, H Y Yu et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat Commun, 4, 1474(2013).

    [77] K F Mak, K L He, C G Lee et al. Tightly bound trions in monolayer MoS2. Nat Mater, 12, 207(2013).

    [78] W Nagourney, J Sandberg, H Dehmelt. Shelved optical electron amplifier: Observation of quantum jumps. Phys Rev Lett, 56, 2797(1986).

    [79] T Basché, S Kummer, C Bräuchle. Direct spectroscopic observation of quantum jumps of a single molecule. Nature, 373, 132(1995).

    [80] R M Dickson, A B Cubitt, R Y Tsien et al. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature, 388, 355(1997).

    [81] C Galland, Y Ghosh, A Steinbrück et al. Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature, 479, 203(2011).

    [82] F C Wu, T Lovorn, A H MacDonald. Topological exciton bands in moiré heterojunctions. Phys Rev Lett, 118, 147401(2017).

    [83] N Zhang, A Surrente, M Baranowski et al. Moiré intralayer excitons in a MoSe2/MoS2 heterostructure. Nano Lett, 18, 7651(2018).

    [84] Y H Tang, J Gu, S Liu et al. Tuning layer-hybridized moiré excitons by the quantum-confined Stark effect. Nat Nanotechnol, 16, 52(2021).

    [85] C H Jin, E C Regan, A M Yan et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature, 567, 76(2019).

    [86] Y H Tang, L Z Li, T X Li et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature, 579, 353(2020).

    [87] B Wu, H H Zheng, S F Li et al. Observation of moiré excitons in the twisted WS2/WS2 homostructure. Nanoscale, 14, 12447(2022).

    [88] T I Andersen, G Scuri, A Sushko et al. Excitons in a reconstructed moiré potential in twisted WSe2/WSe2 homobilayers. Nat Mater, 20, 480(2021).

    [89] B Wu, H H Zheng, S F Li et al. Evidence for moiré intralayer excitons in twisted WSe2/WSe2 homobilayer superlattices. Light Sci Appl, 11, 166(2022).

    [90] Y D Liu, A Elbanna, W B Gao et al. Interlayer excitons in transition metal dichalcogenide semiconductors for 2D optoelectronics. Adv Mater, 34, e2107138(2022).

    [91] Y P Liu, C Zeng, J Yu et al. Moiré superlattices and related moiré excitons in twisted van der Waals heterostructures. Chem Soc Rev, 50, 6401(2021).

    [92] C Y Jiang, W G Xu, A Rasmita et al. Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures. Nat Commun, 9, 753(2018).

    [93] S Dufferwiel, S Schwarz, F Withers et al. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities. Nat Commun, 6, 8579(2015).

    [94] Z F Wang, D A Rhodes, K Watanabe et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature, 574, 76(2019).

    [95] J Ji, J H Choi. Recent progress in 2D hybrid heterostructures from transition metal dichalcogenides and organic layers: Properties and applications in energy and optoelectronics fields. Nanoscale, 14, 10648(2022).

    [96] D B Sulas-Kern, E M Miller, J L Blackburn. Photoinduced charge transfer in transition metal dichalcogenide heterojunctions - towards next generation energy technologies. Energy Environ Sci, 13, 2684(2020).

    [97] P K Nayak, Y Horbatenko, S Ahn et al. Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der waals heterostructures. ACS Nano, 11, 4041(2017).

    [98] P Rivera, K L Seyler, H Y Yu et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science, 351, 688(2016).

    [99] E Marcellina, X Liu, Z H Hu et al. Evidence for moiré trions in twisted MoSe2 homobilayers. Nano Lett, 21, 4461(2021).

    [100] J Kunstmann, F Mooshammer, P Nagler et al. Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures. Nat Phys, 14, 801(2018).

    [101] W Yan, L Meng, Z S Meng et al. Probing angle-dependent interlayer coupling in twisted bilayer WS2. J Phys Chem C, 123, 30684(2019).

    [102] A T Hanbicki, H J Chuang, M R Rosenberger et al. Double indirect interlayer exciton in a MoSe2/WSe2 van der waals heterostructure. ACS Nano, 12, 4719(2018).

    [103] H Y Yu, G B Liu, W Yao. Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers. 2D Mater, 5, 035021(2018).

    [104] Q H Tan, A Rasmita, S Li et al. Layer-engineered interlayer excitons. Sci Adv, 7, eabh0863(2021).

    [105] E F Liu, E Barré, J van Baren et al. Signatures of moiré trions in WSe2/MoSe2 heterobilayers. Nature, 594, 46(2021).

    [106] K Tran, G Moody, F C Wu et al. Evidence for moiré excitons in van der waals heterostructures. Nature, 567, 71(2019).

    [107] H Y Yu, Y Wang, Q J Tong et al. Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Phys Rev Lett, 115, 187002(2015).

    [108] F C Wu, T Lovorn, A H MacDonald. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys Rev B, 97, 035306(2018).

    [109] H Y Yu, G B Liu, J J Tang et al. Moiré excitons: From programmable quantum emitter arrays to spin-orbit-coupled artificial lattices. Sci Adv, 3, e1701696(2017).

    [110] M Brotons-Gisbert, H Baek, A Molina-Sánchez et al. Spin-layer locking of interlayer excitons trapped in moiré potentials. Nat Mater, 19, 630(2020).

    [111] Y Jiang, S L Chen, W H Zheng et al. Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures. Light Sci Appl, 10, 72(2021).

    [112] B B Shi, P F Qi, M L Jiang et al. Exotic physical properties of 2D materials modulated by moiré superlattices. Mater Adv, 2, 5542(2021).

    [113] H Z Zhang, W J Wu, L Zhou et al. Steering on degrees of freedom of 2D van der waals heterostructures. Small Sci, 2, 2100033(2022).

    [114] F He, Y J Zhou, Z F Ye et al. Moiré patterns in 2D materials: A review. ACS Nano, 15, 5944(2021).

    [115] H Baek, M Brotons-Gisbert, A Campbell et al. Optical read-out of Coulomb staircases in a moiré superlattice via trapped interlayer trions. Nat Nanotechnol, 16, 1237(2021).

    [116] Y S Bai, L Zhou, J Wang et al. Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Nat Mater, 19, 1068(2020).

    [117] X Wang, J Y Zhu, K L Seyler et al. Moiré trions in MoSe2/WSe2 heterobilayers. Nat Nanotechnol, 16, 1208(2021).

    [118] K Shinokita, Y Miyauchi, K Watanabe et al. Resonant coupling of a moiré exciton to a phonon in a WSe2/MoSe2 heterobilayer. Nano Lett, 21, 5938(2021).

    [119] H Baek, M Brotons-Gisbert, Z X Koong et al. Highly energy-tunable quantum light from moiré-trapped excitons. Sci Adv, 6, eaba8526(2020).

    [120] Y M He, G Clark, J R Schaibley et al. Single quantum emitters in monolayer semiconductors. Nat Nanotechnol, 10, 497(2015).

    [121] A Srivastava, M Sidler, A V Allain et al. Optically active quantum dots in monolayer WSe2. Nat Nanotechnol, 10, 491(2015).

    [122] M Koperski, K Nogajewski, A Arora et al. Single photon emitters in exfoliated WSe2 structures. Nat Nanotechnol, 10, 503(2015).

    [123] C Chakraborty, L Kinnischtzke, K M Goodfellow et al. Voltage-controlled quantum light from an atomically thin semiconductor. Nat Nanotechnol, 10, 507(2015).

    [124] X Lu, X T Chen, S Dubey et al. Optical initialization of a single spin-valley in charged WSe2 quantum dots. Nat Nanotechnol, 14, 426(2019).

    [125] X T Chen, X Lu, S Dubey et al. Entanglement of single-photons and chiral phonons in atomically thin WSe2. Nat Phys, 15, 221(2019).

    [126] K L Seyler, P Rivera, H Y Yu et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 567, 66(2019).

    [127] W J Li, X Lu, S Dubey et al. Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nat Mater, 19, 624(2020).

    [128] M M Fogler, L V Butov, K S Novoselov. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat Commun, 5, 4555(2014).

    [129] D Snoke. Spontaneous Bose coherence of excitons and polaritons. Science, 298, 1368(2002).

    [130] D Unuchek, A Ciarrocchi, A Avsar et al. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature, 560, 340(2018).

    [131] D Unuchek, A Ciarrocchi, A Avsar et al. Valley-polarized exciton currents in a van der Waals heterostructure. Nat Nanotechnol, 14, 1104(2019).

    [132] A Ciarrocchi, D Unuchek, A Avsar et al. Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nat Photonics, 13, 131(2019).

    [133] Y D Liu, H L Fang, A Rasmita et al. Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. Sci Adv, 5, eaav4506(2019).

    [134] E Y Paik, L Zhang, G W Burg et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature, 576, 80(2019).

    [135] S Lukman, L Ding, L Xu et al. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nat Nanotechnol, 15, 675(2020).

    [136] S Park, D Kim, M K Seo. Plasmonic photonic crystal mirror for long-lived interlayer exciton generation. ACS Photonics, 8, 3619(2021).

    [137] T N Tran, S Kim, S J U White et al. Enhanced emission from interlayer excitons coupled to plasmonic gap cavities. Small, 17, e2103994(2021).

    [138] L Yuan, B Y Zheng, J Kunstmann et al. Twist-angle-dependent interlayer exciton diffusion in WS2–WSe2 heterobilayers. Nat Mater, 19, 617(2020).

    [139] E M Alexeev, D A Ruiz-Tijerina, M Danovich et al. Resonantly hybridized excitons in moiré superlattices in van der waals heterostructures. Nature, 567, 81(2019).

    [140] L Zhang, R Gogna, G W Burg et al. Highly valley-polarized singlet and triplet interlayer excitons in van der waals heterostructure. Phys Rev B, 100, 041402(2019).

    [141] V V Enaldiev, F Ferreira, J G McHugh et al. Self-organized quantum dots in marginally twisted MoSe2/WSe2 and MoS2/WS2 bilayers. npj 2D Mater Appl, 6, 74(2022).

    Hua Li, Jinyang Ling, Jiamin Lin, Xin Lu, Weigao Xu. Interface engineering in two-dimensional heterostructures towards novel emitters[J]. Journal of Semiconductors, 2023, 44(1): 011001
    Download Citation