• Photonic Sensors
  • Vol. 5, Issue 4, 289 (2015)
Md. Arafat HOSSAIN1、2, John CANNING1、3、3、*, Sandra AST3, Peter J. RUTLEDGE3, and Abbas JAMALIPOUR2
Author Affiliations
  • 1interdisciplinary Photonics Laboratories (iPL), School of Chemistry, The University of Sydney, NSW 2006, Australia
  • 2Wireless Networking Group (WiNG), School of Electrical and Information Engineering, The University of Sydney, NSW 2006, Australia
  • 3School of Chemistry, The University of Sydney, NSW 2006, Australia
  • show less
    DOI: 10.1007/s13320-015-0256-x Cite this Article
    Md. Arafat HOSSAIN, John CANNING, Sandra AST, Peter J. RUTLEDGE, Abbas JAMALIPOUR. Early Warning Smartphone Diagnostics for Water Security and Analysis Using Real-Time pH Mapping[J]. Photonic Sensors, 2015, 5(4): 289 Copy Citation Text show less
    References

    [1] Australian government’s National Health and Medical Research Council, “Australian drinking water guidelines 6,” National Water Quality Management Strategy, 2013, 2: 174.

    [2] Sydney Water, Quarterly Drinking Water Quality Report, 1 Jul. 2013 to 30 Sep. 2013, Sydney, Australian: Sydney Water. www.sydneywater.com.au, 2014.

    [3] P. H. Gleick, “Water and terrorism,” Water Policy, 2006, 8(6): 481–503.

    [4] J. S. Hall, J. G. Szabo, S. Panguluri, and G. Meiners, Distribution System Water Quality Monitoring: Sensor Technology Evaluation Methodology and Results, Cincinnati, U. S. A.: U. S. Environmental Protection Agency, 2009.

    [5] J. V. Capella, A. Bonastre, R. Ors, and M. Peris, “A wireless sensor network approach for distributed in-line chemical analysis of water,” Talanta, 2010, 80(5): 1789–1798.

    [6] M. A. Hossain, J. Canning, S. Ast, T. L. Yen, P. J. Rutledge, and A. Jamalipour, “A smartphone fluorometer - the lab-in-a-phone,” in Conference: Optical Sensor, pp. SeTh2C.1, 2014.

    [7] M. A. Hossain, J. Canning, S. Ast, P. J. Rutledge, T. L. Yen, and A. Jamalipour, “Lab-in-a-phone: smartphone-based portable fluorometer for pH measurements of environmental water,” IEEE Sensor Journal, 2015, 15(9): 5095–5102.

    [8] A. F. Coskun, J. Wong, D. Khodadadi, R. Nagi, A. Teya, and A. Ozcan, “A personalized food allergen testing platform on a cell phone,” Lab Chip, 2013, 13(4): 636–640.

    [9] Q. Wei, R. Nagi, K. Sadeghi, S. Feng, E. Yan, S. J. Ki, et al., “Detection and spatial mapping of mercury contamination in water samples using a smart-phone,” ACS Nano, 2014, 8(2): 1121–1129.

    [10] S. Sumriddetchkajorn, K. Chaitavon, and Y. Intaravanne, “Mobile-platform based colorimeter for monitoring chlorine concentration in water,” Sensors and Actuators B: Chemical, 2014, 191: 561–566 2014.

    [11] Y. Intaravannea, S. Sumriddetchkajorn, and J. Nukeawa, “Cell phone-based two-dimensional spectral analysis for banana ripeness estimation,” Sensors and Actuators B: Chemical, 2012, 168: 390–394.

    [12] A. García, M. M. Erenas, E. D. Marinetto, C. A. Abada, I. O. Paya, A. J. Palma, et al., “Mobile phone platform as portable chemical analyzer,” Sensors and Actuators B: Chemical, 2011, 156(1): 350–359, 2011.

    [13] Z. Iqbal and R. B. Bjorklund, “Assessment of a mobile phone for use as a spectroscopic analytical tool for foods and beverages,” International Journal of Food Science & Technology, 2011, 46(11): 2428–2436.

    [14] J. Canning, A. Lau, M. Naqshbandi, I. Petermann, and M. J. Crossley, “Measurement of fluorescence in a rhodamine-123 doped self-assembled ’giant’ meso-structured silica sphere using a smartphone as optical hardware,” Sensors, 2011, 11(7): 70551–7062.

    [15] Z. Iqbal and R. B. Bjorklund, “Colorimetric analysis of water and sand samples performed on a mobile phone,” Talanta, 2011, 84(4): 1118–1123.

    [16] T. S. Park and J. Y. Yoon, “Smartphone detection of escherichia coli from field water samples on paper microfluidics” IEEE Sensor Journal, 2015, 15(3): 1902–1907.

    [17] D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile phone based clinical microscopy for global health applications,” PLoS ONE, 2009, 4(7): e6320-1–e6320-7, 2009.

    [18] Z. J. Smith, K. Chu, A. R. Espenson, A. Gryshuk, M. Molinaro, D. M. Dwyre, et al., “Cell phone-based platform for biomedical device development and education applications,” PLoS ONE, 2011, 6(3): e17150-1–e17150-11.

    [19] Q. Wei, H. Qi, W. Luo, D. Tseng, S. J. Ki, Z. Wan, et al., “Fluorescent imaging of single nanoparticles and viruses on a smart phone,” ACS Nano, 2013, 7(10): 9147–9155.

    [20] A. Skandarajah, C. D. Reber, N. A. Switz, and D. A. Fletcher, “Quantitative imaging with a mobile phone microscope,” PLoS ONE, 2014, 9(5): e96906-1–e96906-12.

    [21] S. Lee and C. Yang, “A smartphone-based chip-scale microscope using ambient illumination,” Lab Chip, 2014, 14(16): 3056–3063.

    [22] H. C. Koydemir, Z. Gorocs, D. Tseng, B. Cortazar, S. Feng, R. Y. L. Chan, et al., “Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning,” Lab Chip, 2015, 15(5): 1284–1293.

    [23] S. K. J. Ludwig, H. Zhu, S. Phillips, A. Shiledar, S. Feng, D. Tseng, et al., “Cellphone-based detection platform for rbST biomarker analysis in milk extracts using a microsphere fluorescence immunoassay,” Analytical and Bioanalytical Chemistry, 2014, 406(27): 6857–6866.

    [24] D. Gallegos, K. D. Long, H. Yu, P. P. Clark, Y. Lin, S. George, et al., “Label-free bio-detection using a smartphone,” Lab Chip, 2013, 13(11): 2124–2132.

    [25] H. Yu, Y. Tan, and B. T. Cunningham, “Smartphone fluorescence spectroscopy,” Analytical Chemistriy, 2014, 86(17): 8805–8813.

    [26] S. Dutta, A. Choudhury, and P. Nath, “Evanescent wave coupled spectroscopic sensing using smartphone,” IEEE Photonics Technology Letters, 2014, 26(6): 568–570.

    [27] M. A. Hossain, J. Canning, S. Ast, K. Cook, P. J. Rutledge, and A. Jamalipour, “Combined ‘dual’ absorption and fluorescent smartphone spectrometers,” Optics Letters, 2015, 40(8): 1737–1740.

    [28] A. W. Martinez, S. T, Phillips, E. Carrilho, S. W. Thomas, H. Sindi, and G. M. Whitesides, “Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis,” Analytical Chemistriy, 2008, 80(10): 3699–3707.

    [29] L. Shen, J. A. Hagan, and I. Papautsky, “Point-of-care colorimetric detection with a smartphone,” Lab Chip, 2012, 12(21): 4240–4243.

    [30] J. I. Hong and B. Y. Chang, Development of “Smartphone-based colorimetry for multi-analyte sensing arrays,” Lab Chip, 2014, 14(10): 1725–1732.

    [31] J. E. Smith, D. K. Griffin, J. K. Leny, J. A. Hagen, J. L. Chávez, and N. K. Loughnane, “Colorimetric detection with aptamer-gold nanoparticle conjugates coupled to an android based color analysis application for use in the field,” Talanta, 2014, 121: 247–255.

    [32] O. M. Mancuso and D. Erickson, “Cholesterol testing on a smartphone,” Lab Chip, 2014, 14(4): 759–763.

    [33] N. S. K. Gunda, S. Naicker, S. Shinde, S. Kimbahune, S. Shrivastava, and S. Mitra, “Mobile water kit (MWK): a smartphone compatible low-cost water monitoring system for rapid detection of total coliform and E. coli,” Analytical Methods, 2014, 6(16): 62361–6246.

    [34] D. Erickson, D. O'Dell, L. Jiang, V. Oncescu, A. Gumus, S. Lee, et al., “Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics,” Lab Chip, 2014, 14(17): 3159–3164.

    [35] T. S. Park, C. Baynes, S. I. Cho, and J. Y. Yoon, “Paper microfluidics for red wine tasting,” RSC Advance, 2014, 4(46): 24356–24362.

    [36] International Telecommunication Union, Mobile-cellular subscriptions 2013, Available online: http://www.itu.int/en/ITU-D/Statistics, 2015.

    [37] B. Oram, Water Research Centre, Available online: http://www.water-research.net/index.php/ph-in-the-e nvironment.mm, 2014.

    [38] J. Buffle and G. Horvai, In situ monitoring of aquatic systems: chemical analysis and speciation. New York, U. S. A.: Willey, 2000.

    [39] J. Canning, M. Naqshbandi, and M. J. Crossley, “Measurement of rhodamine B absorption in self-assembled silica microwires using a Tablet as the optical source,” in Proc. SPIE, vol. 8351, pp. 83512E-1–83512E -5, 2012.

    [40] S. Feng, R. Caire, B. Cortazar, M. Turan, A. Wong, and A. Ozcan “Immunochromatographic diagnostic test analysis using Google Glass,” ACS Nano, 2014, 8(3): 3069–3079.

    [41] B. Cortazar, H. C. Koydemir, D. Tseng, S. Feng, and A. Ozcan, “Quantification of plant chlorophyll content using google glass,” Lab Chip, 2015, 15(7): 1708–1716.

    [42] Sesorex, SAM-1 for iPhone, iPad and Android, Avialable online: http://www.sensorex.com/products /more/sam_1, 2015.

    [43] A. P. D. Silva, H. Q. N. Gunaratne, J. L. Habib-Jiwan, C. P. McCoy, T. E. Rice, and J. P. Soumillion, “New fluorescent model compounds for the study of photoinduced electron transfer: the influence of a molecular electric field in the excited state,” Angewandte Chemie International Edition, 1995, 34(16): 1728–1731.

    Md. Arafat HOSSAIN, John CANNING, Sandra AST, Peter J. RUTLEDGE, Abbas JAMALIPOUR. Early Warning Smartphone Diagnostics for Water Security and Analysis Using Real-Time pH Mapping[J]. Photonic Sensors, 2015, 5(4): 289
    Download Citation