• Journal of Semiconductors
  • Vol. 45, Issue 9, 090501 (2024)
Pengfei Qu1,2, Peng Jin1,2,*, Guangdi Zhou1,2, Zhen Wang1,2, and Zhanguo Wang1,2
Author Affiliations
  • 1Laboratory of Solid-State Optoelectronic Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1088/1674-4926/24060003 Cite this Article
    Pengfei Qu, Peng Jin, Guangdi Zhou, Zhen Wang, Zhanguo Wang. Growth of two-inch free-standing heteroepitaxial diamond on Ir/YSZ/Si (001) substrates via laser-patterned templates[J]. Journal of Semiconductors, 2024, 45(9): 090501 Copy Citation Text show less
    References

    [1] C J H Wort, R S Balmer. Diamond as an electronic material. Mater Today, 11, 22(2008).

    [2] J Isberg, J Hammersberg, E Johansson et al. High carrier mobility in single-crystal plasma-deposited diamond. Science, 297, 1670(2002).

    [3] A V Inyushkin, A N Taldenkov, V G Ralchenko et al. Thermal conductivity of high purity synthetic single crystal diamonds. Phys Rev B, 97, 144305(2018).

    [4] T Kwak, J Lee, U Choi et al. Diamond Schottky barrier diodes fabricated on sapphire-based freestanding heteroepitaxial diamond substrate. Diam Relat Mater, 114, 108335(2021).

    [5] M Feng, P Jin, X Meng et al. Performance of metal-semiconductor-metal structured diamond deep-ultraviolet photodetector with a large active area. J Phys D: Appl Phy, 55, 404005(2022).

    [6] M Salvadori, F Consoli, C Verona et al. Accurate spectra for high energy ions by advanced time-of-flight diamond-detector schemes in experiments with high energy and intensity lasers. Sci Rep, 11, 3071(2021).

    [7] S Prawer, A D Greentree. Diamond for quantum computing. Science, 320, 1601(2008).

    [8] M Schreck, J Asmussen, S Shikata et al. Large-area high-quality single crystal diamond. MRS Bull, 39, 504(2014).

    [9] J C Arnault, K H Lee, J Delchevalrie et al. Epitaxial diamond on Ir/SrTiO3/Si (001): From sequential material characterizations to fabrication of lateral Schottky diodes. Diam Relat Mater, 105, 107768(2020).

    [10] Y H Tang, B Golding. Stress engineering of high-quality single crystal diamond by heteroepitaxial lateral overgrowth. Appl Phys Lett, 108, 052101(2016).

    [11] S W Kim, Y Kawamata, R Takaya et al. Growth of high-quality one-inch free-standing heteroepitaxial (001) diamond on (112¯0) sapphire substrate. Appl Phys Lett, 117, 202102(2020).

    [12] S W Kim, R Takaya, S Hirano et al. Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire (112¯0) misoriented substrate by step-flow mode. Appl Phys Express, 14, 115501(2021).

    [13] K Ichikawa, K Kurone, H Kodama et al. High crystalline quality heteroepitaxial diamond using grid-patterned nucleation and growth on Ir. Diam Relat Mater, 94, 92(2019).

    [14] M Schreck, S Gsell, R Brescia et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers. Sci Rep, 7, 44462(2017).

    [15] V Lebedev, J Kustermann, J Engels et al. Coalescence as a key process in wafer-scale diamond heteroepitaxy. J Appl Phys, 135, 145302(2024).

    [16] C Stehl, M Fischer, S Gsell et al. Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications. Appl Phys Lett, 103, 151905(2013).

    [17] H Aida, T Ihara, R Oshima et al. Analysis of external surface and internal lattice curvatures of freestanding heteroepitaxial diamond grown on an Ir (001)/MgO (001) substrate. Diam Relat Mater, 136, 110026(2023).

    [18] M Kasu, R Takaya, S W Kim. Growth of high-quality inch-diameter heteroepitaxial diamond layers on sapphire substrates in comparison to MgO substrates. Diam Relat Mater, 126, 109086(2022).

    [19] Y Kimura, T Ihara, T Ojima et al. Physical bending of heteroepitaxial diamond grown on an Ir/MgO substrate. Diam Relat Mater, 110055(2023).

    [20] P Qu, P Jin, G Zhou et al. Epitaxial growth of high-quality yttria-stabilized zirconia films with uniform thickness on silicon by the combination of PLD and RF sputtering. Surf Coat Technol, 456, 129267(2023).

    [21] G Zhou, P Qu, X Huo et al. The deposition of Ir/YSZ double-layer thin films on silicon by PLD and magnetron sputtering: Growth kinetics and the effects of oxygen. Results Phys, 47, 106357(2023).

    Pengfei Qu, Peng Jin, Guangdi Zhou, Zhen Wang, Zhanguo Wang. Growth of two-inch free-standing heteroepitaxial diamond on Ir/YSZ/Si (001) substrates via laser-patterned templates[J]. Journal of Semiconductors, 2024, 45(9): 090501
    Download Citation