[1] C J H Wort, R S Balmer. Diamond as an electronic material. Mater Today, 11, 22(2008).
[2] J Isberg, J Hammersberg, E Johansson et al. High carrier mobility in single-crystal plasma-deposited diamond. Science, 297, 1670(2002).
[3] A V Inyushkin, A N Taldenkov, V G Ralchenko et al. Thermal conductivity of high purity synthetic single crystal diamonds. Phys Rev B, 97, 144305(2018).
[4] T Kwak, J Lee, U Choi et al. Diamond Schottky barrier diodes fabricated on sapphire-based freestanding heteroepitaxial diamond substrate. Diam Relat Mater, 114, 108335(2021).
[5] M Feng, P Jin, X Meng et al. Performance of metal-semiconductor-metal structured diamond deep-ultraviolet photodetector with a large active area. J Phys D: Appl Phy, 55, 404005(2022).
[6] M Salvadori, F Consoli, C Verona et al. Accurate spectra for high energy ions by advanced time-of-flight diamond-detector schemes in experiments with high energy and intensity lasers. Sci Rep, 11, 3071(2021).
[7] S Prawer, A D Greentree. Diamond for quantum computing. Science, 320, 1601(2008).
[8] M Schreck, J Asmussen, S Shikata et al. Large-area high-quality single crystal diamond. MRS Bull, 39, 504(2014).
[9] J C Arnault, K H Lee, J Delchevalrie et al. Epitaxial diamond on Ir/SrTiO3/Si (001): From sequential material characterizations to fabrication of lateral Schottky diodes. Diam Relat Mater, 105, 107768(2020).
[10] Y H Tang, B Golding. Stress engineering of high-quality single crystal diamond by heteroepitaxial lateral overgrowth. Appl Phys Lett, 108, 052101(2016).
[11] S W Kim, Y Kawamata, R Takaya et al. Growth of high-quality one-inch free-standing heteroepitaxial (001) diamond on (112¯0) sapphire substrate. Appl Phys Lett, 117, 202102(2020).
[12] S W Kim, R Takaya, S Hirano et al. Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire (112¯0) misoriented substrate by step-flow mode. Appl Phys Express, 14, 115501(2021).
[13] K Ichikawa, K Kurone, H Kodama et al. High crystalline quality heteroepitaxial diamond using grid-patterned nucleation and growth on Ir. Diam Relat Mater, 94, 92(2019).
[14] M Schreck, S Gsell, R Brescia et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers. Sci Rep, 7, 44462(2017).
[15] V Lebedev, J Kustermann, J Engels et al. Coalescence as a key process in wafer-scale diamond heteroepitaxy. J Appl Phys, 135, 145302(2024).
[16] C Stehl, M Fischer, S Gsell et al. Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications. Appl Phys Lett, 103, 151905(2013).
[17] H Aida, T Ihara, R Oshima et al. Analysis of external surface and internal lattice curvatures of freestanding heteroepitaxial diamond grown on an Ir (001)/MgO (001) substrate. Diam Relat Mater, 136, 110026(2023).
[18] M Kasu, R Takaya, S W Kim. Growth of high-quality inch-diameter heteroepitaxial diamond layers on sapphire substrates in comparison to MgO substrates. Diam Relat Mater, 126, 109086(2022).
[19] Y Kimura, T Ihara, T Ojima et al. Physical bending of heteroepitaxial diamond grown on an Ir/MgO substrate. Diam Relat Mater, 110055(2023).
[20] P Qu, P Jin, G Zhou et al. Epitaxial growth of high-quality yttria-stabilized zirconia films with uniform thickness on silicon by the combination of PLD and RF sputtering. Surf Coat Technol, 456, 129267(2023).
[21] G Zhou, P Qu, X Huo et al. The deposition of Ir/YSZ double-layer thin films on silicon by PLD and magnetron sputtering: Growth kinetics and the effects of oxygen. Results Phys, 47, 106357(2023).
微信里点“发现”,扫一下
二维码便可将本文分享至朋友圈。
Set citation alerts for the article
Please enter your email address
CancelConfirm