• Laser & Optoelectronics Progress
  • Vol. 51, Issue 2, 20001 (2014)
Tao Rumao*, Zhou Pu, Xiao Hu, Wang Xiaolin, Si Lei, and Liu Zejin
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop51.020001 Cite this Article Set citation alerts
    Tao Rumao, Zhou Pu, Xiao Hu, Wang Xiaolin, Si Lei, Liu Zejin. Progress of Study on Mode Instability in High Power Fiber Amplifiers[J]. Laser & Optoelectronics Progress, 2014, 51(2): 20001 Copy Citation Text show less
    References

    [1] D J Richardson, J Nilsson, W A Clarkson. High power fiber lasers: current status and future perspectives [J]. J Opt Soc Am B, 2010, 27(11): B63-B92.

    [2] Wei Jingbo, Hu Guijun, Du Yang, et al.. High power all-optical gain-clamped fiber amplifier [J]. Acta Optica Sinica, 2013, 33(7): 0706012.

    [3] Zhou Jun, He Bing, Xue Yuhao, et al. Study on passive coherent beam combination technology of high power fiber laser arrays [J]. Acta Optica Sinica, 2011, 31(9): 0900129.

    [4] Dai Shoujun, He Bing, Zhou Jun, et al.. Cooling technology of high-power and high-power fiber laser amplifier [J]. Chinese J Lasers, 2013, 40(5): 0502003.

    [5] Yan Ping, Xiao Qirong, Fu Chen, et al.. 1.6 kW Yb-doped all-fiber laser[J]. Chinese J Lasers, 2012, 39(4): 0416001.

    [6] Li Jie, Chen Zilun, Zhou Hang, et al.. Status and development of pumping technology for high power fiber lasers [J]. Laser & Optoelectronics Progress, 2012, 49(2): 020003.

    [7] C Jauregui, T Eidam, H-J Otto, et al.. Physical origin of mode instabilities in high-power fiber laser systems [J]. Opt Express, 2012, 20(12): 12912-12925.

    [8] T Eidam, C Wirth, C Jauregui, et al.. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers [J]. Opt Express, 2011, 19(14): 13218-13224.

    [9] D Engin, W Lu, H Verdun, et al.. High power modal instability measurements of very large mode area (VLMA) step index fibers [C]. SPIE, 2013, 8733: 87330J.

    [10] T Eidam, S Hanf, E Seise, et al.. Femtosecond ber CPA system emitting 830 W average output power [J]. Opt Lett, 2010, 35(2): 94-96.

    [11] F Stutzki, H-J Otto, F Jansen, et al.. High-speed modal decomposition of modeinstabilities in high-power fiber lasers [J]. Opt Lett, 2011, 36(23): 4572-4574.

    [12] H-J Otto, C Jauregui, F Stutzki. Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector [J]. Opt Express, 2013, 21(14): 17285-17298.

    [13] M Laurila, M M J rgensen, K R Hansen, et al.. Distributed mode filtering rod fiber amplifier delivering 292 W with improved mode stability [J]. Opt Express, 2012, 20(5): 5742-5753.

    [14] F Jansen, F Stutzki, H J Otto, et al.. Thermally induced waveguide changes in active fibers [J]. Opt Express, 2012, 20(4): 3997-4008.

    [15] B Ward, C Robin, I Dajani. Origin of thermal modal instabilities in large mode area fiber amplifiers [J]. Opt Express, 2012, 20(10): 11407-11422.

    [16] H-J Otto, F Stutzki, F Jansen, et al.. Temporal dynamics of mode-instabilities in high power fiber lasers and amplifiers [J]. Opt Express, 2012, 20(14): 15710-15722.

    [17] N Haarlammert, O de Vries, A Liem, et al.. Build up and decay of mode instability in a high power fiber amplifier [J]. Opt Express, 2012, 20(12): 13274-13283.

    [18] C Jauregui, T Eidam, J Limpert, et al.. The impact of modal interference on the beam quality of high-power fiber amplifiers [J]. Opt Express, 2011, 19(4): 3258-3271.

    [19] A V Smith, J J Smith. Mode instability in high power fiber amplifiers [J]. Opt Express, 2011, 19(11): 10180-10192.

    [20] A V Smith, Jesse J Smith. Steady-periodic method for modelingmode instability in ber ampli ers [J]. Opt Express, 2013, 21(3): 2606-2623.

    [21] A V Smith, J J Smith. In uence of pump and seed modulationon the mode instability thresholds of ber ampli ers [J]. Opt Express, 2012, 20(22): 24545-24558.

    [22] K R Hansen, T T Alkeskjold, J Broeng, et al.. Thermally induced mode coupling in rare-earthdoped fiber amplifiers [J]. Opt Lett, 2012, 37(12): 2382-2384.

    [23] K R Hansen, T T Alkeskjold, J Broeng, et al.. Theoretical analysis of mode instabilityin high-power ber ampli ers [J]. Opt Express, 2013, 21(2): 1944-1971.

    [24] L Dong. Stimulated thermal Rayleigh scattering in optical fibers [J]. Opt Express, 2013, 21(3): 2642-2656.

    [25] I-Ning Hu, C Zhu, C Zhang, et al.. Analytical time-dependenttheory of thermally-induced modal instabilities in high power ber amplifiers [C]. SPIE, 2013, 8601: 860109.

    [26] C Jauregui, H-J Ottoa, F Jansena, et al.. Mode instabilities: physical origin and mitigation strategies [C]. SPIE, 2013, 8601:86010F.

    [27] C Jauregui, H-J Otto, F Stutzki, et al.. Passive mitigation strategies for mode instabilities in high-power fiber laser systems [J]. Opt Express, 2013, 21(16): 19375-19386.

    [28] B Ward. Modeling of transient modal instability in fiber amplifiers [J]. Opt Express, 2013, 21(10): 12053-12067.

    [29] S Naderi, I Dajani, T Madden, et al.. Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations [J]. Opt Express, 2013, 21(13): 16111-16129.

    [30] C Wirth, T Schreiber, M Rekas, et al. High-power linear-polarized narrow linewidth photonic crystal fiber amplifier [C]. SPIE, 2010, 7580: 75801H.

    [31] O Schmidt, M Rekas, C Wirth, et al.. High power narrow-band fiber-based ASE source [J]. Opt Express, 2011, 19(5): 4421-4427.

    [32] T Eidam, S H drich, F Jansen, et al.. Preferential gain photonic-crystal fiber for mode stabilization at high average powers [J]. Opt Express, 2011, 19(9): 8656-8661.

    [33] F Stutzki, F Jansen, T Eidam, et al.. High average power large-pitch fiber amplifier with robust single-mode operation [J]. Opt Lett, 2011, 36(5): 689-691.

    [34] M M J rgensen, M Laurila, D Noordegraaf, et al.. Thermal-recovery of modal instability in rod fiber amplifiers [C]. SPIE, 2013, 8601: 86010U.

    [35] C Wirth, O Schmidt, I Tsybin, et al.. High average power spectral beam combiningof four fiber amplifiers to 8.2 kW [J]. Opt Lett, 2011, 36(16): 3118-3120.

    [36] C Jocher, T Eidama, S H dricha, et al.. 23 fs pulses at 250 W of average power from a FCPA with solid core nonlinear compression [C]. SPIE, 2013, 8601: 86011F.

    [37] M Karow, H Tünnermann, J Neumann, et al.. Beam quality degradation of a single-frequency Yb-dopedphotonic crystal fiberamplifier with low mode instability threshold power [J]. Opt Lett, 2012, 37(20): 4242-4244.

    [38] M Laurila, J Saby, T T Alkeskjold, et al.. Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser [J]. Opt Express, 2011, 19 (11): 10824-10833.

    [39] T J Wagner. Fiber laser beam combining and power scaling progress, Air Force Research Laboratory Laser Division [C]. SPIE, 2012, 8237: 823718.

    [40] Tao Rumao, Wang Xiaolin, Xiao Hu, et al.. Theoretical study of the threshold power of mode instability in high-power fiber amplifiers [J]. Acta Optica Sinica, 2014, 34(1): 0114002.

    [41] C Robin, I Dajani, C Zeringue, et al.. Gain-tailored SBS suppressing photonic crystal fibers for high powerapplications [C]. SPIE, 2012, 8237: 82371D.

    CLP Journals

    [1] Shi Chen, Tao Rumao, Wang Xiaolin, Zhou Pu, Xu Xiaojun, Lu Qisheng. New Progress and Phenomena of Modal Instability in Fiber Lasers[J]. Chinese Journal of Lasers, 2017, 44(2): 201004

    [2] Xia Changming, Tian Hongchun, Hou Zhiyun, Liu Jiantao, Zhang Sa, Zhang Wei, Fu Jian, Wu Jiale, Zhou Guiyao. Laser Performance of Yb3+-Doped Photonic Crystal Fiber Using the Powder Sinter Direction Drawn Rod Technology[J]. Chinese Journal of Lasers, 2016, 43(2): 205001

    [3] Wang Xiaolin, Zhang Hanwei, Tao Rumao, Su Rongtao, Zhou Pu, Xu Xiaojun. Laser Diode Pumped 4.1 kW All-Fiber Laser with Master Oscillator Power Amplification Configuration[J]. Chinese Journal of Lasers, 2016, 43(5): 502002

    Tao Rumao, Zhou Pu, Xiao Hu, Wang Xiaolin, Si Lei, Liu Zejin. Progress of Study on Mode Instability in High Power Fiber Amplifiers[J]. Laser & Optoelectronics Progress, 2014, 51(2): 20001
    Download Citation