• Opto-Electronic Engineering
  • Vol. 49, Issue 8, 220006 (2022)
Zixuan Ding, Ye Chen, and Fei Xu*
Author Affiliations
  • College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
  • show less
    DOI: 10.12086/oee.2022.220006 Cite this Article
    Zixuan Ding, Ye Chen, Fei Xu. Optical microfiber resonator: principle and applications[J]. Opto-Electronic Engineering, 2022, 49(8): 220006 Copy Citation Text show less
    Schematic diagram of a microfiber
    Fig. 1. Schematic diagram of a microfiber
    Cross-section of step-index fiber
    Fig. 2. Cross-section of step-index fiber
    (a) Effective refractive index of HE11 and HE12 mode for step-index fiber with varied diameter; (b) Cross-section mode field distribution of fiber with cladding diameter of 80 μm and 20 μm[25]; (c) Variation of effective refractive index for high-order modes in microfiber versus diameter at wavelength of 800 nm
    Fig. 3. (a) Effective refractive index of HE11 and HE12 mode for step-index fiber with varied diameter; (b) Cross-section mode field distribution of fiber with cladding diameter of 80 μm and 20 μm[25]; (c) Variation of effective refractive index for high-order modes in microfiber versus diameter at wavelength of 800 nm
    Microfiber resonators. (a) Microfiber loop resonator; (b) Microfiber knot resonator; (c) Microfiber coil resonator
    Fig. 4. Microfiber resonators. (a) Microfiber loop resonator; (b) Microfiber knot resonator; (c) Microfiber coil resonator
    (a) Natural coordinate system of MCR; (b) MCR under cylindrical coordinates; (c) Cross-section of adjacent microfibers
    Fig. 5. (a) Natural coordinate system of MCR; (b) MCR under cylindrical coordinates; (c) Cross-section of adjacent microfibers
    Parameters of microfiber resonator. (a) Group delay; (b) Dispersion; (c) Transmission spectrum
    Fig. 6. Parameters of microfiber resonator. (a) Group delay; (b) Dispersion; (c) Transmission spectrum
    Roadmap of evolution in Q-factor of microfiber resonator
    Fig. 7. Roadmap of evolution in Q-factor of microfiber resonator
    (a) Schematic diagram of flame-brushing technique; (b) SEM image of a silica microfiber
    Fig. 8. (a) Schematic diagram of flame-brushing technique; (b) SEM image of a silica microfiber
    Fabrication of microfiber resonator. (a) Fabrication of MLR; (b) MKR’s cutting-end fabrication; (c) MKR’s complete fabrication; (d) Microscopic image of MKR; (e) Microscopic image of MCR; (f) Fabrication of MCR; (g) Fabrication of graphene-integrated MCR
    Fig. 9. Fabrication of microfiber resonator. (a) Fabrication of MLR; (b) MKR’s cutting-end fabrication; (c) MKR’s complete fabrication; (d) Microscopic image of MKR; (e) Microscopic image of MCR; (f) Fabrication of MCR; (g) Fabrication of graphene-integrated MCR
    Temperature sensitivity as a function of the microfiber radius after package
    Fig. 10. Temperature sensitivity as a function of the microfiber radius after package
    Sensors based on microfiber resonators. (a) Refractometric sensor based on MLR[52]; (b) Graphene oxide deposited MKR for gas sensing[62]; (c) Temperature sensor based on MKR[64]; (d) Current sensor based on graphene-integrated MCR; (e) Hybrid-plasmonic MKR; (f) Soft and wearable HPMKR sensor; (g) Fiber hydrophone based on MKR[39]; (h) Microfluidic sensor based on MCR; (i) 3D-stereo grating based on a microstructured rod with MCR
    Fig. 11. Sensors based on microfiber resonators. (a) Refractometric sensor based on MLR[52]; (b) Graphene oxide deposited MKR for gas sensing[62]; (c) Temperature sensor based on MKR[64]; (d) Current sensor based on graphene-integrated MCR; (e) Hybrid-plasmonic MKR; (f) Soft and wearable HPMKR sensor; (g) Fiber hydrophone based on MKR[39]; (h) Microfluidic sensor based on MCR; (i) 3D-stereo grating based on a microstructured rod with MCR
    Optical signal processing.(a) MCR broad band polarizer[38]; (b) Graphene-integrated MCR all-optical modulator[81]; (c) Polarization-dependent modulation of graphene-integrated MCR all-optical modulator[81]; (d) Graphene-integrated MKR all-optical modulator[82]; (e) WS2-integrated MKR all-optical modulator[83]; (f) MCR delay line[84]
    Fig. 12. Optical signal processing.(a) MCR broad band polarizer[38]; (b) Graphene-integrated MCR all-optical modulator[81]; (c) Polarization-dependent modulation of graphene-integrated MCR all-optical modulator[81]; (d) Graphene-integrated MKR all-optical modulator[82]; (e) WS2-integrated MKR all-optical modulator[83]; (f) MCR delay line[84]
    Application of microfiber resonators in fiber laser.(a) Application schemes of microfiber-resonator-based fiber laser; (b) Operation regimes of microfiber-resonator-based fiber laser
    Fig. 13. Application of microfiber resonators in fiber laser.(a) Application schemes of microfiber-resonator-based fiber laser; (b) Operation regimes of microfiber-resonator-based fiber laser
    两步法体块直接拉制法扫火法
    玻璃材料石英石英、碲酸盐、磷酸盐石英
    损耗/(dB/mm)0.1 (633/1550 nm) ~ 0.1 (633 nm) ~ 0.02 (1550 nm)
    低损耗直径/nm450/1100 (633/1550 nm) 420/280/410 (石英/碲酸盐/磷酸盐) 375
    极限直径/nm5050130
    参考文献[5] [41] [9, 42]
    Table 1. Performance comparison of 3 microfiber fabrication methods
    谐振器类型测量对象灵敏度参考文献
    浓度传感
    MCR异丙基浓度40 nm/RIU[51]
    MLR酒精浓度 甘油浓度 17.8 nm/RIU 109.7 nm/RIU [52]
    MLR海水盐度1000 nm/RIU 或 2 nm/%[53]
    MKR甲醇、乙醇、丙醇、异丙醇浓度/[54]
    MKRNaCl浓度1.7 nm/%[55]
    MKRNaCl浓度0.2 nm/%[56]
    MKR湿度1.2 pm/% (石英光纤) 8.8 pm/% (聚合物光纤) [57]
    MLR湿度1.8 pm/%[58]
    MKR湿度5.95 pm/%[59]
    MKR湿度1.53 nm/%[60]
    MKRNH3分子浓度 CO分子浓度 0.35 pm/ppm 0.17pm/ppm [62]
    MCRPb2+离子浓度 702 pm/ppm[63]
    温度传感
    MKR温度280 pm/℃[65]
    MKR温度266 pm/℃[64]
    MLR温度0.043 dB/℃[66]
    MKR电流0.0513 nm/A2[67]
    MCR电流220.65 nm/A2[68]
    MCR电流6.7297×104 nm/A2[69]
    应力传感
    MKR压强51.2 pm/kPa[33]
    MKR压强16.02 pm/kPa[71]
    MKR压强−288 dB re (μPa)−1[39]
    其它
    MKR加速度29 pm/G[73]
    MKR磁场~ 0.3 pm/Oe[74]
    Table 2. Sensors based on microfiber resonators
    谐振器类型应用方式性能参数参考文献
    滤波器
    工作波长/nmFSR/nm精细度对比度/dB插损/dB
    MLR滤波8403.2~3.84.3100.97[75]
    MKR通信码型转换15500.32~0.64/> 108[77]
    MLR上下载滤波15500.3~0.644~6.53.7~7.52.5[78]
    MKR滤波46002~9.610.24~8> 4[80]
    调制器
    工作波长/nm调制深度/dB调制效率/(dB/mW)上升/下降时间/ms
    MCR全光调制15507.50.2/[81]
    MKR全光调制15507.40.02/[82]
    MKR全光调制155017.10.4120/100[83]
    MKR全光调制155012.70.52.8/3.3[86]
    MKR全光调制155012.90.260.306/0.301[87]
    MKR热光调制155013.4/0.0908/0.0897[88]
    非线性
    泵浦光波长/nm信号光波长/nm转换效率谐振腔增强因子
    MLR二次谐波产生15507752.4 × 10−75.7[89]
    MLR三次谐波产生1550516.71.8 × 10−55.9[90]
    Table 3. Signal processing based on microfiber resonators
    谐振器类型性能参数参考文献
    单波长激光器
    中心波长/nm线宽/pm对比度/dB输出功率/μW
    MKR1541.150478[34]
    MKR15363.2 × 10−4380.9575[94]
    MKR1560.61660/[95]
    MKR1550.7721660.68 × 103[96]
    多波长连续激光器
    中心波长/nmFSR/nm波长通道数
    MKR567~5800.216[46]
    MKR1528.3~1561.30.18411[97]
    MKR15640.0942[98]
    MKR1546.95~1562.290.8131~4[99]
    MCR1882.50.5412[100]
    MKR19655.83[101]
    多波长脉冲激光器
    中心波长/nmFSR/nm波长通道数重复频率脉宽/ps
    MKR15351.1275.3 MHz16.3[103]
    MKR1045 1561 0.59 0.86 4 6 162 GHz 106.7 GHz < 6.17 <9.37 [104]
    MKR15600.33~1.16> 341 GHz~144 GHz6.6[40]
    MLR15550.46> 357.8 GHz3.4[105]
    MKR1533 1548 0.2215 / 27.4 GHz 15.5/140 MHz 1.55 1.36/1.45 [106]
    Table 4. Fiber laser based on microfiber resonators
    Zixuan Ding, Ye Chen, Fei Xu. Optical microfiber resonator: principle and applications[J]. Opto-Electronic Engineering, 2022, 49(8): 220006
    Download Citation