• Opto-Electronic Engineering
  • Vol. 51, Issue 3, 230287-1 (2024)
Suisui Wan1,2, Yajun Pang1,2,*, Ruixiang Xue1,2, and Zhenxu Bai1,2
Author Affiliations
  • 1Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
  • 2Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
  • show less
    DOI: 10.12086/oee.2024.230287 Cite this Article
    Suisui Wan, Yajun Pang, Ruixiang Xue, Zhenxu Bai. Design of short-range LiDAR receiver based on MEMS mirror[J]. Opto-Electronic Engineering, 2024, 51(3): 230287-1 Copy Citation Text show less
    System overall structure diagram
    Fig. 1. System overall structure diagram
    MEMS scanning spot array with varying diameters. (a) Spot diameter of 3 mm; (b) Spot diameter of 5 mm
    Fig. 2. MEMS scanning spot array with varying diameters. (a) Spot diameter of 3 mm; (b) Spot diameter of 5 mm
    Variation of light spot diameter with different focal lengths
    Fig. 3. Variation of light spot diameter with different focal lengths
    Angular distribution of MEMS light spot deviations
    Fig. 4. Angular distribution of MEMS light spot deviations
    MEMS deflection angle and echo power correlation
    Fig. 5. MEMS deflection angle and echo power correlation
    Optical antenna structure for reception
    Fig. 6. Optical antenna structure for reception
    Surface track image of the detector
    Fig. 7. Surface track image of the detector
    Geometric ring entrance energy map
    Fig. 8. Geometric ring entrance energy map
    Distribution of relative illuminance in different fields of view
    Fig. 9. Distribution of relative illuminance in different fields of view
    Wide angle echo reception circuit
    Fig. 10. Wide angle echo reception circuit
    Design of TDC7200 time measurement
    Fig. 11. Design of TDC7200 time measurement
    TDC7200 internal working mechanism
    Fig. 12. TDC7200 internal working mechanism
    TDC time measurement process flowchart
    Fig. 13. TDC time measurement process flowchart
    Histogram of actual measurement with 150 ns
    Fig. 14. Histogram of actual measurement with 150 ns
    Measurement error of TDC in actual conditions
    Fig. 15. Measurement error of TDC in actual conditions
    Receiving physical devices
    Fig. 16. Receiving physical devices
    Time distribution of testing at a distance of 6 m
    Fig. 17. Time distribution of testing at a distance of 6 m
    Actual indoor scene testing
    Fig. 18. Actual indoor scene testing
    100 kHz echo waveform
    Fig. 19. 100 kHz echo waveform
    参数指标
    工作波段1550 nm
    全视场角30°
    全像高1 mm
    F数1.4
    入瞳直径3 mm
    全视场相对照度90%
    天线接收增益9.4
    系统长度50 mm
    Table 1. Optical receiver system specifications
    标准时间间隔最大测量值最小测量值测量平均值测量误差标准差
    100100.83899.292100.1030.1030.092
    110110.603109.637110.1280.1280.077
    120120.646119.663120.1370.1370.084
    130130.323129.969130.1350.1350.107
    140140.388139.988140.1740.1740.109
    150150.580149.775150.1780.1780.101
    160160.361159.979160.1850.1850.107
    170170.469169.857170.1790.1790.115
    180180.471179.882180.1860.1860.108
    190190.842189.607190.1950.1950.117
    200200.853199.463200.2190.2190.120
    Table 2. Time measurement data (time unit: ns)
    测量距离/m时间真实值/ns时间标准差/ns均值误差/cm
    2.516.9810.4524.71
    319.8110.5592.84
    426.3820.6494.28
    533.7540.7366.31
    639.3540.8719.68
    747.0511.2365.76
    Table 3. Revised actual ranging results
    微镜扫描角度/(°)回波幅度/mV测距值/m实际误差/m
    +14.5286
    +12.63177.820.25
    +10.63247.750.22
    +8.53357.680.20
    +6.412773.050.03
    +4.313973.030.02
    +2.217163.020.02
    09573.030.03
    Table 4. Results of 100 kHz echo test
    Suisui Wan, Yajun Pang, Ruixiang Xue, Zhenxu Bai. Design of short-range LiDAR receiver based on MEMS mirror[J]. Opto-Electronic Engineering, 2024, 51(3): 230287-1
    Download Citation