• Semiconductor Optoelectronics
  • Vol. 41, Issue 2, 217 (2020)
LI Guannan1,2, LIU Lituo1, ZHOU Weihu1,2,*, SHI Junkai1, and CHEN Xiaomei1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.16818/j.issn1001-5868.2020.02.014 Cite this Article
    LI Guannan, LIU Lituo, ZHOU Weihu, SHI Junkai, CHEN Xiaomei. Study of Defect Perturbation in Reflective Field of EUV Mask Multilayer[J]. Semiconductor Optoelectronics, 2020, 41(2): 217 Copy Citation Text show less
    References

    [1] Kim S S, Chalykh R, Kim H, et al. Progress in EUV lithography toward manufacturing[C]// Extreme Ultraviolet (EUV) Lithography Ⅷ. Inter. Society for Optics and Photonics, 2017, 10143: 2264043.

    [2] Yamane T, Watanabe H. Application of EUV dark field image for EUVL mask fabrication[C]// Photomask Japan 2017: Symp. on Photomask and Next -generation Lithography Mask Technol., 2017, 10454: 2280133.

    [3] Krautschik C G, Nishiyama I. Printability of opaque and clear phase defects using the finite-difference time-domain (FDTD) method[J]. Proc. of SPIE, 2003, 5037: 831-840.

    [4] Barty A, Mirkarimi P, Stearns D G, et al. EUVL Mask Blank Repair[J]. Proc. of SPIE, 2002, 4688: 472313.

    [5] Yang Xiong. Investigation on extreme ultraviolet lithography mask[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2005.

    [6] Hashimoto T, Yamanashi H, Sugawara M, et al. Lithographic characterization of EUVL mask blank defects[C]// Microlithography Inter. Society for Optics and Photonics, 2004, 5374: 534692.

    [7] Gullikson E M, Cerjan C, Stearns D G, et al. Practical approach for modeling extreme ultraviolet lithography mask defects[J]. J. of Vacuum Science & Technol. B (Microelectronics and Nanometer Structures), 2002, 20(1): 8681-8686.

    [8] Lam M C, Neureuther A R. Fast simulation methods for defective EUV mask blank inspection[J]. Proc. of SPIE, 2004, 5567: 741-750.

    [9] Clifford C H, Montgomery M W, Maurer W, et al. Compensation methods using a new model for buried defects in extreme ultraviolet lithography masks[J]. Proc. of SPIE, 2010, 7823: 78230V.

    [10] Sugawara M. Simulation analysis of printability of scratch and bump defects in EUV lithography[J]. Proc. of SPIE, 2006, 6151: 61510W-61510W-10.

    [11] Yeung M, Barouch E. A very fast and accurate rigorous EMF simulator for EUVL masks based on the pseudo-spectral time-domain method[J]. Proc. of SPIE, 2013, 8701: 870113.

    [12] Yoo M S, Park S W, Kim J H, et al. Aerial image characterization for the defects in the extreme ultraviolet mask[C]// 11th Korean Conf. on Semiconductor, 2004, 45(5): 1218-1223.

    [13] Besacier M, Schiavone P, Farys V, et al. Modeling of the influence of the defect position on the reflected intensity in EUV mask[J]. Proc. of SPIE-The International Society for Optical Engineering, 2005, 5751(1): 77-84.

    [14] Liu Xiaolei, Li Sikun, Wang Xiangzhao. Simulation model based on equivalent layer method for defective mask multilayer in extreme ultraviolet lithography[J]. Acta Optica Sinica, 2015, 35(6): 0622005.

    [15] Zhang Heng, Li Sikun, Wang Xiangzhao. A rapid simulation method for diffraction spectra of EUV lithography mask based on improved structural decomposition[J]. Acta Optica Sinica, 2018, 38(1): 0105001.

    [16] Zhang Heng, Li Sikun, Wang Xiangzhao, et al. 3D rigorous simulation of defective masks used for EUV lithography via machine learning-based calibration[J]. Acta Optica Sinica, 2018, 38(12): 1222002.

    [17] Mirkarimi P B, Stearns D G. Investigating the growth of localized defects in thin films using gold nanospheres[J]. Appl. Phys. Lett., 2000, 77(14): 2243.

    LI Guannan, LIU Lituo, ZHOU Weihu, SHI Junkai, CHEN Xiaomei. Study of Defect Perturbation in Reflective Field of EUV Mask Multilayer[J]. Semiconductor Optoelectronics, 2020, 41(2): 217
    Download Citation