• Acta Optica Sinica
  • Vol. 44, Issue 10, 1026005 (2024)
Zhikai Zhou, Sicong Wang*, and Xiangping Li**
Author Affiliations
  • Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511443, Guangdong , China
  • show less
    DOI: 10.3788/AOS240431 Cite this Article Set citation alerts
    Zhikai Zhou, Sicong Wang, Xiangping Li. Generation and Manipulation of Optical Skyrmions (Invited)[J]. Acta Optica Sinica, 2024, 44(10): 1026005 Copy Citation Text show less
    References

    [1] Skyrme T H R. A non-linear field theory[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 260, 127-138(1961).

    [2] Skyrme T H R. A unified field theory of mesons and baryons[J]. Nuclear Physics, 31, 556-569(1962).

    [3] Naya C, Sutcliffe P. Skyrmions and clustering in light nuclei[J]. Physical Review Letters, 121, 232002(2018).

    [4] Halcrow C, Harland D. Attractive spin-orbit potential from the Skyrme model[J]. Physical Review Letters, 125, 042501(2020).

    [5] Nagaosa N, Tokura Y. Topological properties and dynamics of magnetic skyrmions[J]. Nature Nanotechnology, 8, 899-911(2013).

    [6] Wiesendanger R. Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics[J]. Nature Reviews Materials, 1, 16044(2016).

    [7] Fert A, Reyren N, Cros V. Magnetic skyrmions: advances in physics and potential applications[J]. Nature Reviews Materials, 2, 17031(2017).

    [8] Bogdanov A N, Panagopoulos C. Physical foundations and basic properties of magnetic skyrmions[J]. Nature Reviews Physics, 2, 492-498(2020).

    [9] Tokura Y, Kanazawa N. Magnetic skyrmion materials[J]. Chemical Reviews, 121, 2857-2897(2021).

    [10] Zhang X C, Zhou Y, Song K M et al. Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications[J]. Journal of Physics: Condensed Matter, 32, 143001(2020).

    [11] Han L, Addiego C, Prokhorenko S et al. High-density switchable skyrmion-like polar nanodomains integrated on silicon[J]. Nature, 603, 63-67(2022).

    [12] Lima Fernandes I, Blügel S, Lounis S. Spin-orbit enabled all-electrical readout of chiral spin-textures[J]. Nature Communications, 13, 1576(2022).

    [13] Smalyukh I I, Lansac Y, Clark N A et al. Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids[J]. Nature Materials, 9, 139-145(2010).

    [14] Foster D, Kind C, Ackerman P J et al. Two-dimensional skyrmion bags in liquid crystals and ferromagnets[J]. Nature Physics, 15, 655-659(2019).

    [15] Duzgun A, Nisoli C. Skyrmion spin ice in liquid crystals[J]. Physical Review Letters, 126, 047801(2021).

    [16] Pišljar J, Ghosh S, Turlapati S et al. Blue phase III: topological fluid of skyrmions[J]. Physical Review X, 12, 011003(2022).

    [17] Nahas Y, Prokhorenko S, Louis L et al. Discovery of stable skyrmionic state in ferroelectric nanocomposites[J]. Nature Communications, 6, 8542(2015).

    [18] Das S, Tang Y L, Hong Z et al. Observation of room-temperature polar skyrmions[J]. Nature, 568, 368-372(2019).

    [19] Das S, Hong Z, Stoica V A et al. Local negative permittivity and topological phase transition in polar skyrmions[J]. Nature Materials, 20, 194-201(2021).

    [20] Donati S, Dominici L, Dagvadorj G et al. Twist of generalized skyrmions and spin vortices in a polariton superfluid[J]. Proceedings of the National Academy of Science, 113, 14926-14931(2016).

    [21] Ge H, Xu X Y, Liu L et al. Observation of acoustic skyrmions[J]. Physical Review Letters, 127, 144502(2021).

    [22] Khalaf E, Chatterjee S, Bultinck N et al. Charged skyrmions and topological origin of superconductivity in magic-angle graphene[J]. Science Advances, 7, eabf5299(2021).

    [23] Tsesses S, Ostrovsky E, Cohen K et al. Optical skyrmion lattice in evanescent electromagnetic fields[J]. Science, 361, 993-996(2018).

    [24] Du L P, Yang A P, Zayats A V et al. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum[J]. Nature Physics, 15, 650-654(2019).

    [25] Yang A P, Lei X R, Shi P et al. Spin-manipulated photonic skyrmion-pair for pico-metric displacement sensing[J]. Advanced Science, 10, e2205249(2023).

    [26] Dai Y N, Zhou Z K, Ghosh A et al. Plasmonic topological quasiparticle on the nanometre and femtosecond scales[J]. Nature, 588, 616-619(2020).

    [27] Davis T J, Janoschka D, Dreher P et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution[J]. Science, 368, eaba6415(2020).

    [28] Król M, Sigurdsson H, Rechcińska K et al. Observation of second-order meron polarization textures in optical microcavities[J]. Optica, 8, 255-261(2021).

    [29] Lei X R, Yang A P, Shi P et al. Photonic spin lattices: symmetry constraints for skyrmion and meron topologies[J]. Physical Review Letters, 127, 237403(2021).

    [30] Shen Y J. Topological bimeronic beams[J]. Optics Letters, 46, 3737-3740(2021).

    [31] Shen Y J, Hou Y N, Papasimakis N et al. Supertoroidal light pulses as electromagnetic skyrmions propagating in free space[J]. Nature Communications, 12, 5891(2021).

    [32] Sugic D, Droop R, Otte E et al. Particle-like topologies in light[J]. Nature Communications, 12, 6785(2021).

    [33] Zhang Q, Xie Z W, Du L P et al. Bloch-type photonic skyrmions in optical chiral multilayers[J]. Physical Review Research, 3, 023109(2021).

    [34] Deng Z L, Shi T, Krasnok A et al. Observation of localized magnetic plasmon skyrmions[J]. Nature Communications, 13, 8(2022).

    [35] Shen Y J, Martínez E C, Rosales-Guzmán C. Generation of optical skyrmions with tunable topological textures[J]. ACS Photonics, 9, 296-303(2022).

    [36] Karnieli A, Tsesses S, Bartal G et al. Emulating spin transport with nonlinear optics, from high-order skyrmions to the topological Hall effect[J]. Nature Communications, 12, 1092(2021).

    [37] Rivera N, Kaminer I. Light-matter interactions with photonic quasiparticles[J]. Nature Reviews Physics, 2, 538-561(2020).

    [38] Manton N, Sutcliffe P[M]. Topological solitons(2004).

    [39] Gao S J, Speirits F C, Castellucci F et al. Paraxial skyrmionic beams[J]. Physical Review A, 102, 053513(2020).

    [40] McWilliam A, Cisowski C, Ye Z J et al. Topological approach of characterizing optical skyrmions and skyrmion lattices[EB/OL]. https:∥arxiv.org/abs/2209.06734

    [41] Cisowski C, Ross C, Franke-Arnold S. Building paraxial optical skyrmions using rational maps[J]. Advanced Photonics Research, 4, 2370007(2023).

    [42] Göbel B, Mertig I, Tretiakov O A. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles[J]. Physics Reports, 895, 1-28(2021).

    [43] Tretiakov O A, Tchernyshyov O. Vortices in thin ferromagnetic films and the skyrmion number[J]. Physical Review B, 75, 012408(2007).

    [44] Shen Y J, Yu B S, Wu H J et al. Topological transformation and free-space transport of photonic hopfions[J]. Advanced Photonics, 5, 015001(2023).

    [45] Kézsmárki I, Bordács S, Milde P et al. Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8[J]. Nature Materials, 14, 1116-1122(2015).

    [46] Milde P, Köhler D, Seidel J et al. Unwinding of a skyrmion lattice by magnetic monopoles[J]. Science, 340, 1076-1080(2013).

    [47] Nayak A K, Kumar V, Ma T P et al. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials[J]. Nature, 548, 561-566(2017).

    [48] Zhang S L, van der Laan G, Hesjedal T. Direct experimental determination of the topological winding number of skyrmions in Cu2OSeO3[J]. Nature Communications, 8, 14619(2017).

    [49] Jani H, Lin J C, Chen J H et al. Antiferromagnetic half-skyrmions and bimerons at room temperature[J]. Nature, 590, 74-79(2021).

    [50] Bera S, Mandal S S. Theory of the skyrmion, meron, antiskyrmion, and antimeron in chiral magnets[J]. Physical Review Research, 1, 033109(2019).

    [51] Yu X Z, Tokunaga Y, Kaneko Y et al. Biskyrmion states and their current-driven motion in a layered manganite[J]. Nature Communications, 5, 3198(2014).

    [52] Zhang X C, Xia J, Zhou Y et al. Control and manipulation of a magnetic skyrmionium in nanostructures[J]. Physical Review B, 94, 094420(2016).

    [53] Song C K, Ma Y X, Jin C D et al. Field-tuned spin excitation spectrum of kπ skyrmion[J]. New Journal of Physics, 21, 083006(2019).

    [54] Wang X S, Qaiumzadeh A, Brataas A. Current-driven dynamics of magnetic hopfions[J]. Physical Review Letters, 123, 147203(2019).

    [55] Luk'yanchuk I, Tikhonov Y, Razumnaya A et al. Hopfions emerge in ferroelectrics[J]. Nature Communications, 11, 2433(2020).

    [56] Raether H. Surface plasmons on gratings[M]. Surface plasmons on smooth and rough surfaces and on gratings. Springer tracts in modern physics, 111, 91-116(1988).

    [57] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).

    [58] Lalanne P, Hugonin J P, Rodier J C. Theory of surface plasmon generation at nanoslit apertures[J]. Physical Review Letters, 95, 263902(2005).

    [59] Gjonaj B, David A, Blau Y et al. Sub-100 nm focusing of short wavelength plasmons in homogeneous 2D space[J]. Nano Letters, 14, 5598-5602(2014).

    [60] Bai C Y, Chen J, Zhang Y X et al. Dynamic tailoring of an optical skyrmion lattice in surface plasmon polaritons[J]. Optics Express, 28, 10320-10328(2020).

    [61] Chen J Y, Ji B Y, Lang P et al. Impact of the geometry of the excitation structure on optical skyrmion[J]. Optics Express, 31, 37929-37942(2023).

    [62] Meiler T, Frank B, Giessen H. Dynamic tailoring of an optical skyrmion lattice in surface plasmon polaritons: comment[J]. Optics Express, 28, 33614-33615(2020).

    [63] Bai C Y, Chen J, Zhang D et al. Dynamic tailoring of an optical skyrmion lattice in surface plasmon polaritons: reply[J]. Optics Express, 28, 33616-33618(2020).

    [64] Yang J, Zheng X Z, Wang J F et al. Symmetry-protected spoof localized surface plasmonic skyrmion[J]. Laser & Photonics Reviews, 16, 2200007(2022).

    [65] Liu C X, Zhang S, Maier S A et al. Disorder-induced topological state transition in the optical skyrmion family[J]. Physical Review Letters, 129, 267401(2022).

    [66] Sun J L, Wang S C, Zhou Z K et al. Generation of optical skyrmions formed by electromagnetic field vectors under 4π focal configurations[J]. Opto-Electronic Engineering, 50, 230059(2023).

    [67] Ren H R, Shao W, Li Y et al. Three-dimensional vectorial holography based on machine learning inverse design[J]. Science Advances, 6, eaaz4261(2020).

    [68] Shi P, Du L P, Li M J et al. Symmetry-protected photonic chiral spin textures by spin-orbit coupling[J]. Laser & Photonics Reviews, 15, 2000554(2021).

    [69] Lin M, Zhang W L, Liu C et al. Photonic spin skyrmion with dynamic position control[J]. ACS Photonics, 8, 2567-2572(2021).

    [70] Lin W B, Ota Y, Arakawa Y et al. Microcavity-based generation of full Poincaré beams with arbitrary skyrmion numbers[J]. Physical Review Research, 3, 023055(2021).

    [71] Teng H A, Zhong J Z, Chen J et al. Physical conversion and superposition of optical skyrmion topologies[J]. Photonics Research, 11, 2042-2053(2023).

    [72] Ye C. Construction of an optical rotator using quarter-wave plates and an optical retarder[J]. Optical Engineering, 34, 3031-3035(1995).

    [73] Wan C H, Shen Y J, Chong A et al. Scalar optical hopfions[J]. eLight, 2, 22(2022).

    [74] Li C H, Wang S C, Li X P. Spatiotemporal pulse weaving scalar optical hopfions[J]. Light, Science & Applications, 12, 54(2023).

    [75] Wang S C, Sun J L, Zheng Z C et al. Topological structures of energy flow: Poynting vector skyrmions[EB/OL]. https:∥arxiv.org/abs/2306.05191

    [76] Karnieli A, Arie A. Fully controllable adiabatic geometric phase in nonlinear optics[J]. Optics Express, 26, 4920-4932(2018).

    [77] Karnieli A, Arie A. All-optical stern-gerlach effect[J]. Physical Review Letters, 120, 053901(2018).

    [78] Zhang X C, Ezawa M, Zhou Y. Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions[J]. Scientific Reports, 5, 9400(2015).

    [79] Zhang X C, Zhou Y, Ezawa M et al. Magnetic skyrmion transistor: skyrmion motion in a voltage-gated nanotrack[J]. Scientific Reports, 5, 11369(2015).

    [80] Zhou Y, Ezawa M. A reversible conversion between a skyrmion and a domain-wall pair in a junction geometry[J]. Nature Communications, 5, 4652(2014).

    [81] Kasai S, Sugimoto S, Nakatani Y et al. Voltage-controlled magnetic skyrmions in magnetic tunnel junctions[J]. Applied Physics Express, 12, 083001(2019).

    [82] Penthorn N E, Hao X, Wang Z et al. Experimental observation of single skyrmion signatures in a magnetic tunnel junction[J]. Physical Review Letters, 122, 257201(2019).

    [83] Shen L C, Xia J, Zhao G P et al. Spin torque nano-oscillators based on antiferromagnetic skyrmions[J]. Applied Physics Letters, 114, 042402(2019).

    [84] Wang W W, Beg M, Zhang B et al. Driving magnetic skyrmions with microwave fields[J]. Physical Review B, 92, 020403(2015).

    [85] Zhang X C, Ezawa M, Xiao D et al. All-magnetic control of skyrmions in nanowires by a spin wave[J]. Nanotechnology, 26, 225701(2015).

    [86] Huang Y Q, Kang W, Zhang X C et al. Magnetic skyrmion-based synaptic devices[J]. Nanotechnology, 28, 08LT02(2017).

    [87] Li S, Kang W, Huang Y Q et al. Magnetic skyrmion-based artificial neuron device[J]. Nanotechnology, 28, 31LT01(2017).

    [88] Prychynenko D, Sitte M, Litzius K et al. Magnetic skyrmion as a nonlinear resistive element: a potential building block for reservoir computing[J]. Physical Review Applied, 9, 014034(2018).

    [89] Pinna D, Bourianoff G, Everschor-Sitte K. Reservoir computing with random skyrmion textures[J]. Physical Review Applied, 14, 054020(2020).

    [90] Pinna D, Araujo F A, Kim J V et al. Skyrmion gas manipulation for probabilistic computing[J]. Physical Review Applied, 9, 064018(2018).

    [91] Zázvorka J, Jakobs F, Heinze D et al. Thermal skyrmion diffusion used in a reshuffler device[J]. Nature Nanotechnology, 14, 658-661(2019).

    [92] Hals K M D, Schecter M, Rudner M S. Composite topological excitations in ferromagnet-superconductor heterostructures[J]. Physical Review Letters, 117, 017001(2016).

    [93] Yang G, Stano P, Klinovaja J et al. Majorana bound states in magnetic skyrmions[J]. Physical Review B, 93, 224505(2016).

    [94] Hagemeister J, Romming N, von Bergmann K et al. Stability of single skyrmionic bits[J]. Nature Communications, 6, 8455(2015).

    [95] Oike H, Kikkawa A, Kanazawa N et al. Interplay between topological and thermodynamic stability in a metastable magnetic skyrmion lattice[J]. Nature Physics, 12, 62-66(2016).

    [96] Cortés-Ortuño D, Wang W W, Beg M et al. Thermal stability and topological protection of skyrmions in nanotracks[J]. Scientific Reports, 7, 4060(2017).

    [97] Je S G, Han H S, Kim S K et al. Direct demonstration of topological stability of magnetic skyrmions via topology manipulation[J]. ACS Nano, 14, 3251-3258(2020).

    [98] He C, Chang J T, Hu Q et al. Complex vectorial optics through gradient index lens cascades[J]. Nature Communications, 10, 4264(2019).

    [99] He C, Chang J T, Salter P S et al. Revealing complex optical phenomena through vectorial metrics[J]. Advanced Photonics, 4, 026001(2022).

    [100] Shen Y J, He C, Song Z P et al. Topologically controlled multiskyrmions in photonic gradient-index lenses[J]. Physical Review Applied, 21, 024025(2024).

    Zhikai Zhou, Sicong Wang, Xiangping Li. Generation and Manipulation of Optical Skyrmions (Invited)[J]. Acta Optica Sinica, 2024, 44(10): 1026005
    Download Citation