• Laser & Optoelectronics Progress
  • Vol. 60, Issue 19, 1900002 (2023)
Yun Fu1、2、*, Hao Tan1、2, Linhui Guo1、2, Lanping Zhang1、2, Quanwei Jiang1、2, Songxin Gao1、2, and Chun Tang1、2
Author Affiliations
  • 1Institute of Applied Electronics, Chinese Academy of Engineering Physics, Mianyang 621900, Sichuan , China
  • 2Key Laboratory of High Energy Laser Science and Technology, Chinese Academy of Engineering Physics, Mianyang 621900, Sichuan , China
  • show less
    DOI: 10.3788/LOP221150 Cite this Article Set citation alerts
    Yun Fu, Hao Tan, Linhui Guo, Lanping Zhang, Quanwei Jiang, Songxin Gao, Chun Tang. Review of Developments in Semiconductor Laser Beam Combining Technology[J]. Laser & Optoelectronics Progress, 2023, 60(19): 1900002 Copy Citation Text show less
    References

    [1] Wang L J, Peng H Y, Zhang J et al. Development of beam combining of high power high brightness diode lasers[J]. Infrared and Laser Engineering, 46, 0401001(2017).

    [2] Jiang M, Ma P F, Su R T et al. Research progress and prospect of spectral beam combining(Invited)[J]. Infrared and Laser Engineering, 49, 20201053(2020).

    [3] Karlsen S R, Price R K, Reynolds M et al. 100-W 105-µm 0.15NA fiber coupled laser diode module[J]. Proceedings of SPIE, 7198, 71980T(2009).

    [4] Xu D, Guo Z J, Zhang T J et al. 600 W high brightness diode laser pumping source[J]. Proceedings of SPIE, 10086, 1008603(2017).

    [5] Kanskar M, Bao L, Chen Z et al. Flared oscillator waveguide diodes (FLOW-diodes) enable high brightness fiber-coupled modules[C](2016).

    [6] Kanskar M, Bao L, Chen Z et al. Continued improvement in reduced-mode (REM) diodes enable 272 W from 105 µm 0.15 NA beam[J]. Proceedings of SPIE, 10086, 1008609(2017).

    [7] Eckstein H C, Zeitner U, Tünnermann A et al. Numerical simulation and optimization of microstructured high brightness broad area laser diodes[J]. Proceedings of SPIE, 9382, 93821H(2015).

    [8] Han L, Liu Y Y, Wang C L et al. Study on polarization multiplexing technology for high-power diode laser arrays[J]. Semiconductor Optoelectronics, 29, 831-834(2008).

    [9] Wang L J, Peng H Y, Zhang J. Advance on high power diode laser coupling[J]. Chinese Optics, 8, 517-534(2015).

    [10] Roh S D, Grasso D M, Small J A. Very high-brightness fiber-coupled diode lasers[J]. Proceedings of SPIE, 7198, 71980Y(2009).

    [11] Garre-Werner G, Montiel-Ponsoda J J, Raab V et al. 1 kW CW fiber-coupled diode laser with enhanced brightness[C], HM2B.7(2020).

    [12] Daneu V, Sanchez A, Fan T Y et al. Spectral beam combining of a broad-stripe diode laser array in an external cavity[J]. Optics Letters, 25, 405-407(2000).

    [13] Fan T Y, Sanchez A, Daneu V et al. Laser beam combining for power and brightness scaling[C], 49-54(2000).

    [14] Hamilton C E, Tidwell S C, Meekhof D et al. High-power laser source with spectrally beam-combined diode laser bars[J]. Proceedings of SPIE, 5336, 1-10(2004).

    [15] Chann B, Huang R K, Missaggia L J et al. Near-diffraction-limited diode laser arrays by wavelength beam combining[J]. Optics Letters, 30, 2104-2106(2005).

    [16] Gopinath J T, Chann B, Fan T Y et al. 1450-nm high-brightness wavelength-beam combined diode laser array[J]. Optics Express, 16, 9405-9410(2008).

    [17] Grasso D M, Roh S D. High-power very high-brightness fiber-coupled diode laser arrays[J]. Proceedings of SPIE, 6952, 69520B(2008).

    [18] Liu B, Li Q, Zhang X et al. Wavelength beam combining of laser diode array to get 20 W CW circle spot emission[J]. High Power Laser and Particle Beams, 1633-1638(2009).

    [19] Vijayakumar D, Jensen O B, Thestrup B. 980 nm high brightness external cavity broad area diode laser bar[J]. Optics Express, 17, 5684-5690(2009).

    [20] Hugger S, Aidam R, Bronner W et al. Power scaling of quantum cascade lasers via multiemitter beam combining[J]. Optical Engineering, 49, 111111(2010).

    [21] Vijayakumar D, Jensen O B, Ostendorf R et al. Spectral beam combining of a 980 nm tapered diode laser bar[J]. Optics Express, 18, 893-898(2010).

    [22] Xiao Y, Brunet F, Kanskar M et al. 1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks[J]. Optics Express, 20, 3296-3301(2012).

    [23] Huang R K, Chann B, Burgess J et al. Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers[J]. Proceedings of SPIE, 8241, 824102(2012).

    [24] Zhang J, Peng H Y, Fu X H et al. CW 50 W/M2=10.9 diode laser source by spectral beam combining based on a transmission grating[J]. Optics Express, 21, 3627-3632(2013).

    [25] Zhang J, Peng H Y, Cao J S et al. 970 nm hundred-watt level diode laser source by spectral beam combining with external cavity feedback[J]. Acta Optica Sinica, 33, 1114001(2013).

    [26] Müller A, Jensen O B, Hasler K H et al. Efficient concept generating 3.9 W of diffraction-limited green light with spectrally combined tapered diode lasers[J]. Proceedings of SPIE, 8604, 860404(2013).

    [27] Zhu Z D, Gou L, Jiang M H et al. High beam quality in two directions and high efficiency output of a diode laser array by spectral-beam-combining[J]. Optics Express, 22, 17804-17809(2014).

    [28] Meng H C, Sun T Y, Tan H et al. High-brightness spectral beam combining of diode laser array stack in an external cavity[J]. Optics Express, 23, 21819-21824(2015).

    [29] Meng H C, Ruan X, Du W C et al. Scaling the spectral beam combining channel by multiple diode laser stacks in an external cavity[J]. Laser Physics Letters, 14, 045811(2017).

    [30] Meng H C, Ruan X, Wang Z et al. Spectral bandwidth narrowing of high brightness spectral beam combining diode laser[J]. IEEE Photonics Journal, 9, 1501506(2017).

    [31] Tan H, Meng H C, Ruan X et al. High-power direct diode laser output by spectral beam combining[J]. Laser Physics, 28, 035802(2018).

    [32] Ried S, Rauch S, Irmler L et al. Next generation diode lasers with enhanced brightness[J]. Proceedings of SPIE, 10514, 105140G(2018).

    [33] Zhang J, Peng H Y, Fu X H et al. High-brightness 800-nm semiconductor laser source based on spectral beam combining[J]. Chinese Journal of Lasers, 47, 0701021(2020).

    [34] Yu H, Tan S Y, Pan H D et al. Development of a 350 W, 50 μm, 0.15 NA wavelength stabilized fiber coupled laser diode module for pumping Yb-doped fiber laser[J]. Proceedings of SPIE, 11262, 112620V(2020).

    [35] Yu H, Tan S Y, Pan H D et al. High efficiency 600 W, 100 μm wavelength stabilized fiber coupled laser diode module for fiber laser pumping[J]. Proceedings of SPIE, 11668, 116680E(2021).

    [36] Zhang Y, Zhang B, Zhu S J. Analysis of the property of the beam after spectral beam combining[J]. Acta Physica Sinica, 56, 4590-4595(2007).

    [37] Zhang Y, Zhang B. Analysis of the spectral beam combining efficiency of diode laser[J]. Infrared and Laser Engineering, 38(2009).

    [38] Haas M, Rauch S, Nagel S et al. Beam quality deterioration in dense wavelength beam-combined broad-area diode lasers[J]. IEEE Journal of Quantum Electronics, 53, 2600111(2017).

    [39] Dong T W, Weng J P, Meng H L et al. Study on the characteristics of laser transmission loss of optical mirror under laser beam combining technology[J]. Laser Journal, 41, 182-187(2020).

    [40] Zediker M S, Stegeman R. Very dense wavelength beam combined laser system[P].

    [41] Chann B, Goyal A K, Fan T Y et al. Efficient, high-brightness wavelength-beam-combined commercial off-the-shelf diode stacks achieved by use of a wavelength-chirped volume Bragg grating[J]. Optics Letters, 31, 1253-1255(2006).

    [42] Liu B, Zhang X, Han J T et al. Wavelength beam combining of laser diode array by wavelength-chirped volume Bragg grating external cavity[J]. High Power Laser and Particle Beams, 20, 1057-1062(2008).

    [43] Jechow A, Raab V, Menzel R. High cw power using an external cavity for spectral beam combining of diode laser-bar emission[J]. Applied Optics, 45, 3545-3547(2006).

    [44] Jechow A, Skoczowsky D, Lichtner M et al. High-brightness emission from stripe-array broad area diode lasers operated in off-axis external cavities[J]. Proceedings of SPIE, 7583, 758312(2010).

    [45] Haas M, Rauch S, Nagel S et al. Thin-film filter wavelength-stabilized, grating combined, high-brightness kW-class direct diode laser[J]. Optics Express, 25, 17657-17670(2017).

    [46] Creedon K J, Redmond S M, Smith G M et al. High efficiency coherent beam combining of semiconductor optical amplifiers[J]. Optics Letters, 37, 5006-5008(2012).

    [47] Lucas-Leclin G, Albrodt P, Pabœuf D et al. Coherent beam combining architectures for high-power laser diodes[M]. Divliansky I. Advances in high-power fiber and diode laser engineering, 37-87(2019).

    [48] Paboeuf D, Lucas-Leclin G, Georges P et al. Narrow-line coherently combined tapered laser diodes in a Talbot external cavity with a volume Bragg grating[J]. Applied Physics Letters, 93, 211102(2008).

    [49] Huang R K, Chann B, Missaggia L J et al. Coherent combination of slab-coupled optical waveguide lasers[J]. Proceedings of SPIE, 7230, 72301G(2009).

    [50] Liu B, Liu Y, Braiman Y. Coherent beam combining of high power broad-area laser diode array with a closed-V-shape external Talbot cavity[J]. Optics Express, 18, 7361-7368(2010).

    [51] Paboeuf D, Emaury F, de Rossi S et al. Coherent beam superposition of ten diode lasers with a Dammann grating[J]. Optics Letters, 35, 1515-1517(2010).

    [52] Liu B, Braiman Y. Coherent beam combining of high power broad-area laser diode array with near diffraction limited beam quality and high power conversion efficiency[J]. Optics Express, 21, 31218-31228(2013).

    [53] Schimmel G, Doyen I, Janicot S et al. Passive coherent combining of two tapered laser diodes in an interferometric external cavity[C], 11-12(2015).

    [54] Schimmel G, Janicot S, Hanna M et al. Coherent beam combining architectures for high power tapered laser arrays[J]. Proceedings of SPIE, 10086, 100860O(2017).

    [55] Liu B, Braiman Y. Coherent addition of high power broad-area laser diodes with a compact VBG V-shaped external Talbot cavity[J]. Optics Communications, 414, 202-206(2018).

    [56] Ng S P, Phua P B. Coherent polarization locking of a diode emitter array[J]. Optics Letters, 34, 2042-2044(2009).

    [57] Purnawirman , Phua P B. High power coherent polarization locked laser diode[J]. Optics Express, 19, 5364-5370(2011).

    [58] Levy J L, Roh K. Coherent array of 900 semiconductor laser amplifiers[J]. Proceedings of SPIE, 2382, 58-69(1995).

    [59] Osinski J S, Mehuys D, Welch D F et al. Phased array of high-power, coherent, monolithic flared amplifier master oscillator power amplifiers[J]. Applied Physics Letters, 66, 556-558(1995).

    [60] Montoya J, Augst S J, Creedon K et al. External cavity beam combining of 21 semiconductor lasers using SPGD[J]. Applied Optics, 51, 1724-1728(2012).

    [61] Albrodt P, Jamal M T, Hansen A K et al. Recent progress in brightness scaling by coherent beam combining of tapered amplifiers for efficient high power frequency doubling[J]. Proceedings of SPIE, 10900, 109000O(2019).

    [62] Albrodt P, Hamperl J, Niemeyer M et al. Coherent superposition of pulsed high-brightness tapered amplifiers[C](2019).

    [63] Hamperl J, Albrodt P, Georges P et al. Compact module for high power coherent beam combining of tapered amplifiers[C], 33-34(2019).

    [64] Albrodt P, Niemeyer M, Crump P et al. Coherent beam combining of high power quasi continuous wave tapered amplifiers[J]. Optics Express, 27, 27891-27901(2019).

    [65] Bogatov A P, Drakin A E, Mikaelyan G T. Coherent combining of diode laser beams in a master oscillator-zigzag slab power amplifier system[J]. Quantum Electronics, 49, 1014-1018(2019).

    [66] Zhu H B, Duan X M, Fan S L et al. Scalable structure of coherent polarization beam combining based on tapered diode laser amplifiers[J]. Optics & Laser Technology, 132, 106470(2020).

    [67] Crump P, Blume G, Feise D et al. Single-pass tapered semiconductor optical amplifiers and modules for efficient coherent beam combining[J]. Proceedings of SPIE, 11705, 117050M(2021).

    [68] Liang D H, Sun H Y, Fan G H et al. The study of laser beam combining technology for laser diode array[J]. Equipment Manufacturing Technology, 115-117(2013).

    Yun Fu, Hao Tan, Linhui Guo, Lanping Zhang, Quanwei Jiang, Songxin Gao, Chun Tang. Review of Developments in Semiconductor Laser Beam Combining Technology[J]. Laser & Optoelectronics Progress, 2023, 60(19): 1900002
    Download Citation