• Laser & Optoelectronics Progress
  • Vol. 54, Issue 3, 30002 (2017)
Shan Hangyong*, Zu Shuai, and Fang Zheyu
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop54.030002 Cite this Article Set citation alerts
    Shan Hangyong, Zu Shuai, Fang Zheyu. Research Progress in Ultrafast Dynamics of Plasmonic Hot Electrons[J]. Laser & Optoelectronics Progress, 2017, 54(3): 30002 Copy Citation Text show less
    References

    [1] Brongersma M L, Halas N J, Nordlander P. Plasmon-induced hot carrier science and technology[J]. Nature Nanotech, 2015, 10(1): 25-34.

    [2] Clavero C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices[J]. Nature Photon, 2014, 8(2): 95-103.

    [3] Atwater H A, Polman A. Plasmonics for improved photovoltaic devices[J]. Nature Mater, 2010, 9(3): 205-213.

    [4] Kneipp K, Wang Y, Kneipp H, et al. Single molecule detection using surface-enhanced Raman scattering (SERS)[J]. Phys Rev Lett, 1997, 78(9): 1667-1670.

    [5] Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced raman scattering[J]. Science, 1997, 275(5303): 1102-1106.

    [6] Kauranen M, Zayats A V. Nonlinear plasmonics[J]. Nature Photon, 2012, 6(11): 737-748.

    [7] Ren Mengxin, Xu Jingjun. Surface plasmon polariton enhanced nonlinearity and applications[J]. Laser & Optoelectronics Progress, 2013, 50(8): 080002.

    [8] Gao Jun. Investigation of siliver nanoparticle films in plasmonics for use as fluorescence enhancement of RH6G molecules[J]. Laser & Optoelectronics Progress, 2015, 52(6): 061601.

    [9] Wang Yue, Wang Xuan, Li Longwei. Properties of light trapping of thin film solar cell based on surface plasmon polaritons[J]. Laser & Optoelectronics Progress, 2015, 52(9): 092401.

    [10] Chalabi H, Brongersma M L. Plasmonics: Harvest season for hot electrons[J]. Nature Nanotech, 2013, 8(4): 229-230.

    [11] Schuck P J. Hot electrons go through the barrier[J]. Nature Nanotech, 2013, 8(11): 799-800.

    [12] Hartland G V. Optical studies of dynamics in noble metal nanostructures[J]. Chem Rev, 2011, 111(6): 3858-3887.

    [13] Link S, El-Sayed M A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles[J]. J Phys Chem B, 1999, 103(21): 4212-4217.

    [14] Link S, Burda C, Wang Z L, et al. Electron dynamics in gold and gold-silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron-phonon relaxation[J]. J Chem Phys, 1999, 111(3): 1255-1264.

    [15] Voisin C, Christofilos D, Fatti N D, et al. Size-dependent electron-electron interactions in metal nanoparticles[J]. Phys Rev Lett, 2000, 85(10): 2200-2203.

    [16] Fatti N D, Flytzanis C, Vallee F. Ultrafast induced electron-surface scattering in a confinedmetallic system[J]. Applied Physics B, 1999, 68(3): 433-437.

    [17] Groeneveld R H M, Sprik R. Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au[J]. Phys Rev B, 1995, 51(17): 11433-11445.

    [18] Bigot J, Merle J, Cregut O, et al. Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses[J]. Phys Rev Lett, 1995, 75(25): 4702-4705.

    [19] Ahmadi T S, Logunov S L, El-Sayed M A. Picosecond dynamics of colloidal gold nanoparticles[J]. J Phys Chem, 1996, 100(20): 8053-8056.

    [20] Logunov S L, Ahmadi T S, El-Sayed M A, et al. Electron dynamics of passivated gold nanocrystals probed by subpicosecond transient absorption spectroscopy[J]. J Phys Chem B, 1997, 101(19): 3713-3719.

    [21] Weiner A M. Ultrafast-pulse measurement methods[M]. John Wiley & Sons, Inc, 2008: 85-146.

    [22] Weiner A M. Ultrafast time-resolved spectroscopy[M]. John Wiley & Sons, Inc, 2008: 422-506.

    [24] Schoenlein R, Lin W, Fujimoto J, et al. Femtosecond studies of nonequilibrium electronic processes in metals[J]. Phys Rev Lett, 1987, 58(16): 1680-1683.

    [25] Sun C K, Vallee F, Acioli L H, et al. Femtosecond-tunable measurement of electron thermalization in gold[J]. Phys Rev B, 1994, 50(20): 15337-15348.

    [26] Mubeen S, Lee J, Singh N, et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons[J]. Nature Nanotech, 2013, 8: 247-251.

    [27] Park J Y, Kim S M, Lee H, et al. Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity[J]. Acc Chem Res, 2015, 48(8): 2475-2483.

    [28] Kang Y, Najmaei S, Liu Z, et al. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer[J]. Adv Mater, 2014, 26(37): 6467-6471.

    [29] Fang Z, Liu Z, Wang Y, et al. Graphene-antenna sandwich photodetector[J]. Nano Lett, 2012, 12(7): 3808-3813.

    [30] Manjavacas A, Liu J G, Kulkarni V, et al. Plasmon-induced hot carriers in metallic nanoparticles[J]. ACS Nano, 2014, 8(8): 7630-7638.

    [31] Sundararaman R, Narang P, Jermyn A S, et al. Theoretical predictions for hot-carrier generation from surface plasmon decay[J]. Nature Commun, 2014, 5(5): 5788.

    [32] Bernardi M, Mustafa J, Neaton J B, et al. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals[J]. Nature Commun, 2015, 6: 7044.

    [33] Brown A M, Sundararaman R, Narang P, et al. Nonradiative plasmon decay and hot carrier dynamics: effects of phonons,surfaces, and geometry[J]. ACS Nano, 2016, 10(1): 957-966.

    [34] Lee Y K, Lee H, Lee C H, et al. Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes[J]. Journal of Physics: Condensed Matter, 2016, 28(25): 254006.

    [35] Kim S M, Lee S W, Moon S Y, et al. The effect of hot electrons and surface plasmons on heterogeneous catalysis[J]. Journal of Physics: Condensed Matter, 2016, 28(25): 254002.

    [36] Jiang R, Li B, Fang C, et al. Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications[J]. Adv Mater, 2014, 26(31): 5274-5309.

    [37] Ingram D B, Composite silver/titania photocatalysts for visible light water splitting: the role of silver surface plasmons[D]. American: University of Michigan, 2011: 30-34.

    [38] Zhang X, Chen Y L, Liu R S, et al. Plasmonic photocatalysis[J]. Reports on Progress in Physics, 2013, 76(4): 46401-46441.

    [39] Furube A, Du L, Hara K, et al. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles[J]. J Am Chem Soc, 2007, 129(48): 14852-12853.

    [40] Wu K, Rodriguez-Cordoba W E, Yang Y, et al. Plasmon-induced hot electron transfer from the Au tip to CdS rod in CdS-Au nanoheterostructures[J]. Nano Lett, 2013, 13(11): 5255-5263.

    [41] Harutyunyan H, Martinson A B F, Rosenmann D, et al. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots[J]. Nature Nanotech, 2015, 10(9): 770-774.

    [42] Zeng P, Cadusch J, Chakraborty D, et al. Photoinduced electron transfer in the strong coupling regime: waveguide-plasmon polaritons[J]. Nano Lett, 2016, 16(4): 2651-2656.

    [43] Yu Y, Ji Z, Zu S, et al. Ultrafast plasmonic hot electron transfer in Au nanoantenna/MoS2 heterostructures[J]. Advanced Functional Materials, 2016, 26(36): 6394-6401.

    [44] Wu K, Chen J, McBride J R, et al. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition[J]. Science, 2015, 349(6248): 632-635.

    [45] Narang P, Sundararaman R, Atwater H A. Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion[J]. Nanophotonics, 2016, 5(1): 96-111.

    [46] Mondal N, Samanta A. Ultrafast charge transfer and trapping dynamics in a colloidal mixture of similarly charged CdTe quantum dots and silver nanoparticles[J]. J Phys Chem C, 2016, 120(1): 650-658.

    [47] Li J, Cushing S K, Meng F, et al. Plasmon-induced resonance energy transfer for solar energy conversion[J]. Nature Photon, 2015, 9(9): 601-607.

    [48] Chen S C, Wu K H, Li J X, et al. In-Situ probing plasmonic energy transfer in Cu (In, Ga) Se2 solar cells by ultrabroadband femtosecond pump-probe spectroscopy[J]. Sci Rep, 2015, 5: 18354.

    CLP Journals

    [1] Hu Jinfeng, Liu Juan, Liu Bin, Chen Jia, Liang Hongqin, Liao Yuncheng, Cai Xuhui. Plasmon-Induced Absorption Based on Double-Stub Resonator and Its Application for Multi-Switching[J]. Laser & Optoelectronics Progress, 2018, 55(10): 102401

    Shan Hangyong, Zu Shuai, Fang Zheyu. Research Progress in Ultrafast Dynamics of Plasmonic Hot Electrons[J]. Laser & Optoelectronics Progress, 2017, 54(3): 30002
    Download Citation