• Laser & Optoelectronics Progress
  • Vol. 55, Issue 12, 122601 (2018)
Shumei Lai1、*, Zhiwei Huang2, Yangjiang Wang1, and Songyan Chen2
Author Affiliations
  • 1 College of Photonic and Mechanical-Electrical Engineering, Minnan University of Science and Technology, Shishi, Fujian 362700, China
  • 2 Department of Physics, Xiamen University, Xiamen, Fujian 361005, China
  • show less
    DOI: 10.3788/LOP55.122601 Cite this Article Set citation alerts
    Shumei Lai, Zhiwei Huang, Yangjiang Wang, Songyan Chen. Simulation and Analysis of Local Surface Plasmon Resonance of Ag Nanostructures[J]. Laser & Optoelectronics Progress, 2018, 55(12): 122601 Copy Citation Text show less
    References

    [1] Zang Y, He X, Li J et al. Band edge emission enhancement by quadrupole surface plasmon-exciton coupling using direct-contact Ag/ZnO nanospheres[J]. Nanoscale, 5, 574-580(2013). http://europepmc.org/abstract/med/23196786

    [2] Li T, Chen J, Zhu S N. Manipulating surface plasmon propagation: from beam modulation to near-field holography[J]. Laser & Optoelectronics Progress, 54, 050002(2017).

    [3] Zhang B X, Chen S F, Fu L et al. Dynamic patterning of microparticles via surface plasmon excitation[J]. Chinese Journal of Lasers, 39, 0610001(2012).

    [4] Brongersma M L, Kik P G. Surface plasmon nanophotonics[M]. New York: Springer(2007).

    [5] Baldassarre L, Sakat E, Frigerio J et al. Mid-infrared plasmon-enhanced spectroscopy with germanium antennas on silicon substrates[J]. Nano Letters, 15, 7225-7231(2015). http://europepmc.org/abstract/MED/26457387

    [6] Willets K A, van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing[J]. Annual Review of Physical Chemistry, 58, 267-297(2007). http://www.ncbi.nlm.nih.gov/pubmed/17067281

    [7] Samarelli A, Frigerio J, Sakat E et al. Fabrication of mid-infrared plasmonic antennas based on heavily doped germanium thin films[J]. Thin Solid Films, 602, 52-55(2016). http://www.sciencedirect.com/science/article/pii/S0040609015009785

    [8] Agrawal A, Johns R W, Milliron D J. Control of localized surface plasmon resonances in metal oxide nanocrystals[J]. Annual Review of Materials Research, 47, 1-31(2017). http://www.annualreviews.org/doi/10.1146/annurev-matsci-070616-124259

    [9] Cao J, Sun T. Grattan K T V. Gold nanorod-based localized surface plasmon resonance biosensors:a review[J]. Sensors and Actuators B, 195, 332-351(2014). http://www.sciencedirect.com/science/article/pii/S0925400514000732

    [10] Catchpole K R, Polman A. Design principles for particle plasmon enhanced solar cells[J]. Applied Physics Letters, 93, 191113(2008). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4835418

    [11] Wiley B J, Im S H, Li Z Y et al. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis[J]. The Journal of Physical Chemistry B, 110, 15666-15675(2006). http://pubs.acs.org/doi/abs/10.1021/jp0608628

    [12] Kelly K L, Coronado E, Zhao L L et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment[J]. The Journal of Physical Chemistry B, 107, 668-677(2003). http://onlinelibrary.wiley.com/doi/10.1002/chin.200316243/full

    [13] Islam K, Alnuaimi A, Battal E et al. Effect of gold nanoparticles size on light scattering for thin film amorphous-silicon solar cells[J]. Solar Energy, 103, 263-268(2014). http://www.sciencedirect.com/science/article/pii/S0038092X14001017

    [14] Shan H Y, Zu S, Fang Z Y. Research progress in ultrafast dynamics of plasmonic hot electrons[J]. Laser & Optoelectronics Progress, 54, 030002(2017).

    [15] Fan W, Lee Y H, Pedireddy S et al. Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing[J]. Nanoscale, 6, 4843-4851(2014). http://www.tandfonline.com/servlet/linkout?suffix=CIT0013&dbid=16&doi=10.1080%2F00032719.2017.1392971&key=10.1039%2FC3NR06316J

    [16] Huang K, Gao N, Wang C et al. Top-and bottom-emission-enhanced electroluminescence of deep-UV light-emitting diodes induced by localised surface plasmons[J]. Scientific Reports, 4, 4380(2014). http://www.nature.com/doifinder/10.1038/srep04380

    [17] Bao G, Li D, Sun X et al. Enhanced spectral response of an AlGaN-based solar-blind ultraviolet photodetector with Al nanoparticles[J]. Optics Express, 22, 24286-24293(2014). http://www.ncbi.nlm.nih.gov/pubmed?term=25322003

    [18] Jia R, Lin G, Zhao D et al. Sandwich-structured Cu2O photodetectors enhanced by localized surface plasmon resonances[J]. Applied Surface Science, 332, 340-345(2015). http://www.sciencedirect.com/science/article/pii/S0169433215002366

    [19] Bai Y, Gao C, Yin Y. Fully alloyed Ag/Au nanorods with tunable surface plasmon resonance and high chemical stability[J]. Nanoscale, 9, 14875-14880(2017). http://www.ncbi.nlm.nih.gov/pubmed/28975172

    [20] West P R, Ishii S, Naik G V et al. Searching for better plasmonic materials[J]. Laser & Photonics Reviews, 4, 795-808(2010). http://onlinelibrary.wiley.com/doi/10.1002/lpor.200900055/full

    [21] Liang H, Wang W, Huang Y et al. Controlled synthesis of uniform silver nanospheres[J]. The Journal of Physical Chemistry C, 114, 7427-7431(2010). http://pubs.acs.org/doi/abs/10.1021/jp9105713

    [22] Wiley B J, Chen Y. McLellan J M, et al. Synthesis and optical properties of silver nanobars and nanorice[J]. Nano Letters, 7, 1032-1036(2007). http://www.ncbi.nlm.nih.gov/pubmed/17343425

    [23] Zhang J, Langille M R, Mirkin C A. Synthesis of silver nanorods by low energy excitation of spherical plasmonic seeds[J]. Nano Letters, 11, 2495-2498(2011). http://europepmc.org/abstract/MED/21528893

    [24] Michaels A M, Jiang J, Brus L. Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules[J]. The Journal of Physical Chemistry B, 104, 11965-11971(2000). http://pubs.acs.org/doi/abs/10.1021/jp0025476

    [25] Li D, Sun X, Song H et al. Realization of a high-performance GaN UV detector by nanoplasmonic enhancement[J]. Advanced Materials, 24, 845-849(2012). http://onlinelibrary.wiley.com/doi/10.1002/adma.201102585/pdf

    [26] Yi M F, Zhu Z S, Li L L. Electric field properties of coupled structure based on silver nanocube and silver film[J]. Infrared and Laser Engineering, 46, 0720003(2017).

    [27] Ma G H, Yu H, Liu Y Q et al. Resonance radiation enhancement of metal nanometer surface plasmons[J]. Laser & Optoelectronics Progress, 55, 042601(2018).

    [28] Yee K. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 14, 302-307(1966). http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1138693

    [29] Link S. El-Sayed M A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods[J]. The Journal of Physical Chemistry B, 103, 8410-8426(1999). http://pubs.acs.org/doi/abs/10.1021/jp9917648

    [30] Yang X C, Liu H X, Li L L et al. Review on influence factors of surface plasmon resonance for nobel metal nanoparticles[J]. Functional Materials, 2, 341-345(2010).

    [31] García M A. Surface plasmons in metallic nanoparticles: fundamentals and applications[J]. Journal of Physics D, 44, 283001(2011). http://www.ingentaconnect.com/content/iop/jphysd/2012/00000045/00000038/art389501

    [32] Rechberger W, Hohenau A, Leitner A et al. Optical properties of two interacting gold nanoparticles[J]. Optics Communications, 220, 137-141(2003). http://www.sciencedirect.com/science/article/pii/S0030401803013579

    [33] Mock J J, Smith D R, Schultz S. Local refractive index dependence of plasmon resonance spectra from individual nanoparticles[J]. Nano Letters, 3, 485-491(2003). http://www.bioone.org/servlet/linkout?suffix=i0005-3155-84-4-210-Mock2&dbid=16&doi=10.1893%2F0005-3155-84.4.210&key=10.1021%2Fnl0340475

    Shumei Lai, Zhiwei Huang, Yangjiang Wang, Songyan Chen. Simulation and Analysis of Local Surface Plasmon Resonance of Ag Nanostructures[J]. Laser & Optoelectronics Progress, 2018, 55(12): 122601
    Download Citation