• Chinese Journal of Lasers
  • Vol. 48, Issue 12, 1201008 (2021)
Jiaqi Zheng1, Zhenhua Cong1、2, Zhaojun Liu1、2, Shang Wang2, and Zhigang Zhao1、2、3、*
Author Affiliations
  • 1School of Information Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
  • 2Shandong Provincial Key Laboratory of Laser Technologies and Applications, Qingdao, Shandong 266237, China
  • 3State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • show less
    DOI: 10.3788/CJL202148.1201008 Cite this Article Set citation alerts
    Jiaqi Zheng, Zhenhua Cong, Zhaojun Liu, Shang Wang, Zhigang Zhao. Recent Trend of High Repetition Rate Ultrashort Laser Pulse Generation and Frequency Conversion[J]. Chinese Journal of Lasers, 2021, 48(12): 1201008 Copy Citation Text show less
    References

    [1] Sun Q, Zu S, Ueno K et al. Applications of ultrafast photoemission electron microscopy in nanophotonics[J]. Chinese Journal of Lasers, 46, 0508001(2019).

    [2] Zou B Y, Dai J N, Hong W Y. Study on supercontinuum generation of femtosecond double pulses bound-state in optical fiber[J]. Chinese Journal of Lasers, 47, 0706003(2020).

    [3] Zhu X N, Bao W X. Fundamentals of ultrashort pulse laser and its applications[J]. Chinese Journal of Lasers, 46, 1200001(2019).

    [4] Cui Z Q, Guan Y C. Review of numerical models of ultrafast laser processing[J]. Laser & Optoelectronics Progress, 57, 111408(2020).

    [5] Li J J, Liu Y, Qu S L. Research progress on optical fiber functional devices fabricated by femtosecond laser micro-nano processing[J]. Laser & Optoelectronics Progress, 57, 111402(2020).

    [6] Wei C, Ma Y P, Han Y et al. Femtosecond laser processing of ultrahard materials[J]. Laser & Optoelectronics Progress, 56, 190003(2019).

    [7] Kerse C, Kalaycıoğlu H, Elahi P et al. Ablation-cooled material removal with ultrafast bursts of pulses[J]. Nature, 537, 84-88(2016).

    [8] Ji N, Magee J C, Betzig E. High-speed, low-photodamage nonlinear imaging using passive pulse splitters[J]. Nature Methods, 5, 197-202(2008). http://www.ncbi.nlm.nih.gov/pubmed/18204458?dopt=Abstract

    [9] Coddington I, Newbury N, Swann W. Dual-comb spectroscopy[J]. Optica, 3, 414-426(2016).

    [10] Lee J, Kim Y J, Lee K et al. Time-of-flight measurement with femtosecond light pulses[J]. Nature Photonics, 4, 716-720(2010). http://www.nature.com/nphoton/journal/v4/n10/full/nphoton.2010.175.html

    [11] Newman Z L, Maurice V, Drake T et al. Architecture for the photonic integration of an optical atomic clock[J]. Optica, 6, 680-685(2019).

    [12] Kliebisch O, Heinecke D C, Dekorsy T. Ultrafast time-domain spectroscopy system using 10 GHz asynchronous optical sampling with 100 kHz scan rate[J]. Optics Express, 24, 29930-29940(2016).

    [13] Wang F. Study on generation and application of high energy DUV lasers[D](2020).

    [14] Okamoto A, Kuniyasu H, Hattori T. Detection of 30-40-nm particles on bulk-silicon and SOI wafers using deep UV laser scattering[J]. IEEE Transactions on Semiconductor Manufacturing, 19, 372-380(2006). http://ieeexplore.ieee.org/document/4012100/citations

    [15] Ma J Z. Angle-resolved photoemission spectroscopy study of topological materials[D](2017).

    [16] Zheng L, Wang H B, Tian W L et al. LD-pumped high-repetition-rate all-solid-state femtosecond lasers[J]. Infrared and Laser Engineering, 49, 20201069(2020).

    [17] Tang D Y, Zhao L M, Zhao B et al. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers[J]. Physical Review A, 72, 043816(2005).

    [18] Becker M F, Kuizenga D J, Siegman A E. Harmonic mode locking of the Nd∶YAG laser[J]. IEEE Journal of Quantum Electronics, 8, 687-693(1972). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1077271

    [19] Zhou S A, Ouzounov D G, Wise F W. Passive harmonic mode-locking of a soliton Yb fiber laser at repetition rates to 1.5 GHz[J]. Optics Letters, 31, 1041-1043(2006).

    [20] Sobon G, Krzempek K, Kaczmarek P et al. 10 GHz passive harmonic mode-locking in Er-Yb double-clad fiber laser[J]. Optics Communications, 284, 4203-4206(2011). http://www.sciencedirect.com/science/article/pii/S0030401811004548

    [21] Kang M S, Joly N Y, Russell P St J. Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances[J]. Optics Letters, 38, 561-563(2013). http://www.opticsinfobase.org/abstract.cfm?URI=ol-38-4-561

    [22] Lecaplain C, Grelu P. Multi-gigahertz repetition-rate-selectable passive harmonic mode locking of a fiber laser[J]. Optics Express, 21, 10897-10902(2013). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6801317

    [23] Thapa R, Nguyen D, Zong J et al. All-fiber fundamentally mode-locked 12 GHz laser oscillator based on an Er/Yb-doped phosphate glass fiber[J]. Optics Letters, 39, 1418-1421(2014).

    [24] Yang C. Investigation of high repetition rate ytterbium-doped dual repetition-rate mode-locked laser system[D](2018).

    [25] Kimura S, Tani S, Kobayashi Y. Kerr-lens mode locking above a 20 GHz repetition rate[J]. Optica, 6, 532-533(2019).

    [26] Gherman T, Romanini D, Sagnes I et al. Cavity-enhanced absorption spectroscopy with a mode-locked diode-pumped vertical external-cavity surface-emitting laser[J]. Chemical Physics Letters, 390, 290-295(2004). http://www.sciencedirect.com/science/article/pii/S0009261404005706

    [27] Aschwanden A, Lorenser D, Unold H J et al. 10 GHz passively mode-locked external-cavity semiconductor laser with 1.4 W average output power[J]. Applied Physics Letters, 86, 131102(2005). http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4876382

    [28] Lorenser D, Maas D J H C, Unold H J et al. 50-GHz passively mode-locked surface-emitting semiconductor laser with 100-mW average output power[J]. IEEE Journal of Quantum Electronics, 42, 838-847(2006).

    [29] Kerse C, KalaycIoğlu H, Elahi P et al. 3.5-GHz intra-burst repetition rate ultrafast Yb-doped fiber laser[J]. Optics Communications, 366, 404-409(2016).

    [30] Bonamis G, Audouard E, Hönninger C et al. Systematic study of laser ablation with GHz bursts of femtosecond pulses[J]. Optics Express, 28, 27702-27714(2020).

    [31] Nakajima Y, Nishiyama A, Minoshima K. Mode-filtering technique based on all-fiber-based external cavity for fiber-based optical frequency comb[J]. Optics Express, 26, 4656-4664(2018). http://www.researchgate.net/publication/323161660_Mode-filtering_technique_based_on_all-fiber-based_external_cavity_for_fiber-based_optical_frequency_comb

    [32] Nakajima Y, Hariki T, Nishiyama A et al. Phase-stabilized all-fiber-based mode-filtering technique for generating a gigahertz frequency comb[J]. Optics Express, 28, 17502-17510(2020). http://www.researchgate.net/publication/341482204_Phase-stabilized_all-fiber-based_mode-filtering_technique_for_generating_gigahertz_frequency_comb

    [33] Bartulevicius T, Madeikis K, Veselis L et al. Active fiber loop for synthesizing GHz bursts of equidistant ultrashort pulses[J]. Optics Express, 28, 13059-13067(2020).

    [34] Li C, Ma Y X, Gao X et al. 1 GHz repetition rate femtosecond Yb: fiber laser for direct generation of carrier-envelope offset frequency[J]. Applied Optics, 54, 8350-8353(2015). http://europepmc.org/abstract/MED/26479608

    [35] Ma Y X, Meng F, Wang Y et al. High contrast linking six lasers to a 1 GHz Yb: fiber laser frequency comb[J]. Chinese Optics Letters, 17, 041402(2019). http://www.opticsjournal.net/Articles/Abstract?aid=OJc598f691e4666e2f

    [36] Wang Y, Liu Y Z, Zhang Z G et al. 97-Watt, 1.08-Gigahertz repetition rate, femtosecond Yb: fiber laser source[C]. //14th Pacific Rim Conference on Lasers and Electro-Optics (CLEO PR 2020), August 3-5, 2020, Sydney, Australia, C2A_2(2020).

    [37] Chen H W, Chang G Q, Xu S H et al. 3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser[J]. Optics Letters, 37, 3522-3524(2012). http://europepmc.org/abstract/med/22940936

    [38] Cheng H H, Wang W L, Zhou Y et al. 5 GHz fundamental repetition rate, wavelength tunable, all-fiber passively mode-locked Yb-fiber laser[J]. Optics Express, 25, 27646-27651(2017). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-25-22-27646

    [39] Zhou Y, Lin W, Cheng H H et al. Composite filtering effect in a SESAM mode-locked fiber laser with a 3.2 GHz fundamental repetition rate: switchable states from single soliton to pulse bunch: erratum[J]. Optics Express, 26, 17458(2018).

    [40] Wang W L, Lin W, Cheng H H et al. Gain-guided soliton: scaling repetition rate of passively modelocked Yb-doped fiber lasers to 12.5 GHz[J]. Optics Express, 27, 10438-10448(2019).

    [41] Gao X B, Zhao Z G, Cong Z H et al. Stable 5-GHz fundamental repetition rate passively SESAM mode-locked Er-doped silica fiber lasers[J]. Optics Express, 29, 9021-9029(2021). http://www.researchgate.net/publication/349698613_Stable_5-GHz_fundamental_repetition_rate_passively_SESAM_mode-locked_Er-doped_silica_fiber_laser

    [42] Liu Y, Lin W, Wang W et al. 130 W, 1.2 GHz femtosecond all-fiber laser at 1.0 μm[C]. //2020 Conference on Lasers and Electro-Optics(CLEO), May 10-15, 2020, San Jose, CA, United States., 1-2(2020).

    [43] Bonamis G, Audouard E, Hönninger C et al. Systematic study of laser ablation with GHz bursts of femtosecond pulses[J]. Optics Express, 28, 27702-27714(2020).

    [44] Kobayashi Y, Nomura Y, Watanabe S. 1.3-GHz, 20-W, femtosecond chirped-pulse amplifier system[C]. //2010 Conference on Lasers and Electro-Optics(CLEO), May 16-21, San Jose, California, United States, CMN3(2010).

    [45] Hartl I, Romann A, Fermann M E. Passively mode locked GHz femtosecond Yb-fiber laser using an intra-cavity Martinez compressor[C]. //2011 Conference on Lasers and Electro-Optics (CLEO), May 1-6, 2011, Baltimore, Maryland, USA, CMD3(2011).

    [46] Zhao Z, Dunham B M, Bazarov I et al. Generation of 110 W infrared and 65 W green power from a 1.3-GHz sub-picosecond fiber amplifier[J]. Optics Express, 20, 4850-4855(2012). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6325817

    [47] Elahi P, Akçaalan Ö, Ertek C et al. High-power Yb-based all-fiber laser delivering 300 fs pulses for high-speed ablation-cooled material removal[J]. Optics Letters, 43, 535-538(2018). http://www.ncbi.nlm.nih.gov/pubmed/29400834

    [48] Marion D, Lhermite J, Pontagnier L et al. 1 to 18 GHz tunable intra-burst repetition rate high-power picosecond fiber laser for ultrafast material processing[C]. //Laser Congress 2018 (ASSL), November 4-8, 2018, Boston, Massachusetts, United States, ATh5A, 5(2018).

    [49] Bonamis G, Mishchik K, Lopez J et al. Industrial GHz femtosecond laser source for high efficiency ablation[C]. //2018 Conference on Lasers and Electro-Optics(CLEO), May 13-18, 2018, San Jose, California, USA, AM2M, 4(2018).

    [50] Bonamis G, Sanabria J, Audouard E et al. 20-W ultraviolet femtosecond GHz burst laser[C]. //2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), June 23-27, 2019, Munich, Germany., 1(2019).

    [51] Liu Y C, Wu J F, Wen X X et al. >100 W GHz femtosecond burst mode all-fiber laser system at 1.0 μm[J]. Optics Express, 28, 13414-13422(2020). http://www.researchgate.net/publication/340631646_100_W_GHz_femtosecond_burst_mode_all-fiber_laser_system_at_10_mm

    [52] Zhao S Z. Nonlinear optics[M](2007).

    [53] Chen C T, Wu B C, Jiang A D et al. A new-type ultraviolet SHG crystal-β-BaB2O4[J]. Science in China Series B, 28, 235-243(1985). http://www.cnki.com.cn/article/cjfdtotal-jbxg198503001.htm

    [54] Chen C T, Wu Y C, Jiang A D et al. New nonlinear-optical crystal: LiB3O5[J]. Journal of the Optical Society of America B, 6, 616-621(1989). http://www.opticsinfobase.org/abstract.cfm?id=5403

    [55] Mori Y, Kuroda I, Nakajima S et al. New nonlinear optical crystal: cesium lithium borate[J]. Applied Physics Letters, 67, 1818-1820(1995). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4886389

    [56] Chen C T, Lü J H, Wang G L et al. Deep ultraviolet harmonic generation with KBe2BO3F2 crystal[J]. Chinese Physics Letters, 18, 1081(2001). http://adsabs.harvard.edu/abs/2001ChPhL..18.1081C

    [57] Wang X Y, Liu L J. Research progress of deep-UV nonlinear optical crystals and all-solid-state deep-UV coherent light sources[J]. Chinese Optics, 13, 427-441(2020).

    [58] Chen C T, Luo S Y, Wang X Y et al. Deep UV nonlinear optical crystal: RbBe2(BO3)F2[J]. Journal of the Optical Society of America B, 26, 1519-1525(2009). http://www.opticsinfobase.org/josab/abstract.cfm?uri=josab-26-8-1519

    [59] Yue Y C, Wu Z X, Lin Z S et al. Growth and properties of bulk Na-doped KABO crystals[J]. Solid State Sciences, 13, 1172-1175(2011). http://www.sciencedirect.com/science/article/pii/S129325581000467X

    [60] Kojima T, Konno S, Fujikawa S et al. 20-W ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser[J]. Optics Letters, 25, 58-60(2000).

    [61] He J L, Lu X Q, Jia Y L et al. All-solid-state Nd∶YVO4 UV laser at 266 nm by fourth harmonic using a BBO crystal[J]. Acta Physica Sinica, 49, 2106-2108(2000).

    [62] Konno S, Inoue Y, Kojima T et al. Efficient high-pulse-energy green-beam generation by intracavity frequency doubling of a quasi-continuous-wave laser-diode-pumped Nd∶YAG laser[J]. Applied Optics, 40, 4341-4343(2001).

    [63] Chang L B, Wang S C, Kung A H. Efficient compact watt-level deep-ultraviolet laser generated from a multi-kHz Q-switched diode-pumped solid-state laser system[J]. Optics Communications, 209, 397-401(2002).

    [64] Kliner D A V, Teodoro F D, Koplow J P et al. Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier[J]. Optics Communications, 210, 393-398(2002).

    [65] Jia Y L. 355 nm\266 nm all-solid-state ultraviolet laser[D](2002).

    [66] Kawai H, Tokuhisa A, Doi M et al. UV light source using fiber amplifier and nonlinear wavelength conversion[C]. //2003 Conference on Lasers and Electro-Optics(CLEO), June 1-6, 2003, Baltimore, Maryland, United States, CTuT4(2003).

    [67] Nishioka M, Fukumoto S, Kawamura F et al. Improvement of laser-induced damage tolerance in CsLiB6O10 for high-power UV laser source[C]. //2003 Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference(CLEO), June 1-6, 2003, Baltimore, Maryland, United States, CTuF2(2003).

    [68] Wang G L, Geng A C, Bo Y et al. 28.4 W 266 nm ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser[J]. Optics Communications, 259, 820-822(2006).

    [69] Liu Q, Yan X P, Fu X et al. High power all-solid-state fourth harmonic generation of 266 nm at the pulse repetition rate of 100 kHz[J]. Laser Physics Letters, 6, 203-206(2009).

    [70] Xiang Z, Ge J H, Zhao Z G et al. 1.9-W flash-lamp-pumped solid-state 266-nm ultraviolet laser[J]. Chinese Optics Letters, 7, 502-504(2009).

    [71] Diening A, McLean S, Starodoumov A. High average power 258 nm generation in a nanosecond fiber MOPA system[J]. Proceedings of SPIE, 7195, 71950H(2009).

    [72] Chen F, Wang W W, Liu J. Diode single-end-pumped AO Q-switched Nd∶GdVO4 266 nm laser[J]. Laser Physics, 20, 454-457(2010).

    [73] Zhuang F J, Ye N, Huang C H et al. Multi-reflected enhancement of fourth harmonic DUV laser generation at 266 nm[J]. Optics Express, 18, 25339-25345(2010).

    [74] Li B, Yao J Q, Ding X et al. Laser diode-side-pumped high power 266 nm ultraviolet laser[J]. High Power Laser and Particle Beams, 23, 2065-2068(2011).

    [75] Liu Q, Yan X P, Gong M L et al. High-power 266 nm ultraviolet generation in yttrium aluminum borate[J]. Optics Letters, 36, 2653-2655(2011). http://europepmc.org/abstract/MED/21765498

    [76] Wang L R, Wang G L, Zhang X et al. Generation of ultraviolet radiation at 266 nm with RbBe2BO3F2 crystal[J]. Chinese Physics Letters, 29, 064203(2012). http://adsabs.harvard.edu/abs/2012ChPhL..29f4203W

    [77] Zhai S Y, Wang X L, Wei Y et al. A compact efficient deep ultraviolet laser at 266 nm[J]. Laser Physics Letters, 10, 045402(2013). http://adsabs.harvard.edu/abs/2013LaPhL..10d5402Z

    [78] Délen X, Deyra L, Benoit A et al. Hybrid master oscillator power amplifier high-power narrow-linewidth nanosecond laser source at 257 nm[J]. Optics Letters, 38, 995-997(2013). http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-38-6-995

    [79] Nikitin D G, Byalkovskiy O A, Vershinin O I et al. Sum frequency generation of UV laser radiation at 266 nm in LBO crystal[J]. Optics Letters, 41, 1660-1663(2016).

    [80] Mu X D, Steinvurzel P, Rose T S et al. High efficiency fourth-harmonic generation from nanosecond fiber master oscillator power amplifier[J]. Proceedings of SPIE, 9731, 973108(2016).

    [81] Goldberg L, Cole B, McIntosh C et al. Narrow-band 1 W source at 257 nm using frequency quadrupled passively Q-switched Yb∶YAG laser[J]. Optics Express, 24, 17397-17405(2016).

    [82] Xuan H W, Qu C, Ito S et al. High-power and high-conversion efficiency deep ultraviolet (DUV) laser at 258 nm generation in the CsLiB6O10 (CLBO) crystal with a beam quality of M2<1.5[J]. Optics Letters, 42, 3133-3136(2017).

    [83] Köhler B, Andres T, Nebel A et al. High-power, high-repetition-rate fourth and fifth harmonic generation of a cw mode locked Nd∶YVO4 laser[C]. //Conference on Lasers and Electro-Optics (CLEO 2000), May 7-12, 2000, San Francisco, CA, USA., 142-143(2000).

    [84] Granados E, Spence D J, Mildren R P. Deep ultraviolet diamond Raman laser[J]. Optics Express, 19, 10857-10863(2011). http://europepmc.org/abstract/MED/21643343

    [85] Orii Y, Takushima Y, Yamagaki M et al. High-energy 266-nm picosecond pulse generation from a narrow spectral bandwidth gain-switched LD MOPA[C]. //CLEO: QELS_Fundamental Science 2013, June 9-14, 2013, San Jose, California United States, JTh2A, 64(2013).

    [86] Hong K H, Chang C L, Krogen P et al. Multi-mJ, kHz picosecond deep UV source based on a frequency-quadrupled cryogenic Yb∶YAG laser[J]. Proceedings of SPIE, 9513, 95130U(2015). http://www.opticsinfobase.org/abstract.cfm?uri=ASSL-2014-ATu3A.3

    [87] Kumar S C, Casals J C, Wei J X et al. High-power, high-repetition-rate performance characteristics of β-BaB2O4 for single-pass picosecond ultraviolet generation at 266 nm[J]. Optics Express, 23, 28091-28103(2015).

    [88] Novák O, Turčičová H, Smrž M et al. Picosecond green and deep ultraviolet pulses generated by a high-power 100 kHz thin-disk laser[J]. Optics Letters, 41, 5210-5213(2016). http://www.ncbi.nlm.nih.gov/pubmed/27842095

    [89] Hou Z Y, Liu L J, Fang Z et al. High-power 266 nm laser generation with a NaSr3Be3B3O9F4 crystal[J]. Optics Letters, 43, 5599-5602(2018). http://www.ncbi.nlm.nih.gov/pubmed/30439905

    [90] Li C, Xuan H W, Winkelmann L et al. 3 GHz, 257 nm picosecond source for electron guns[C]. //2018 Europhoton, September 2-7, 2018, Barcelona, Spain, 04177(2018).

    [91] Turcicova H, Novak O, Roskot L et al. New observations on DUV radiation at 257 nm and 206 nm produced by a picosecond diode pumped thin-disk laser[J]. Optics Express, 27, 24286-24299(2019). http://www.ncbi.nlm.nih.gov/pubmed/31510320

    [92] Orii Y, Kono K. World's highest output high-repetition deep-ultraviolet picosecond pulsed laser[J]. Optical Alliance, 10, 12-15(2019).

    [93] Liu K, Li H, Qu S Z et al. 20 W, 2 mJ, sub-ps, 258 nm all-solid-state deep-ultraviolet laser with up to 3 GW peak power[J]. Optics Express, 28, 18360-18367(2020). http://www.researchgate.net/publication/341675767_20_W_2_mJ_sub-ps_258_nm_all-solid-state_deep-ultraviolet_laser_with_up_to_3_GW_peak_power

    [94] Kohno K, Orii Y, Sawada H et al. High-power DUV picosecond pulse laser with a gain-switched-LD-seeded MOPA and large CLBO crystal[J]. Optics Letters, 45, 2351-2354(2020). http://www.researchgate.net/publication/339958983_High-power_DUV_picosecond_pulse_laser_with_a_gain-switched-LD-seeded_MOPA_and_large_CLBO_crystal

    [95] Zhou X Y, Yoshitomi D, Kobayashi Y et al. 1 W average-power 100 MHz repetition-rate 259 nm femtosecond deep ultraviolet pulse generation from ytterbium fiber amplifier[J]. Optics Letters, 35, 1713-1715(2010).

    [96] Müller M, Klenke A, Gottschall T et al. High-average-power femtosecond laser at 258 nm[J]. Optics Letters, 42, 2826-2829(2017).

    [97] Rao A S, Chaitanya N A, Samanta G K. High-power, high repetition-rate, ultrafast fibre laser based source of DUV radiation at 266 nm[J]. OSA Continuum, 2, 99-106(2019). http://www.researchgate.net/publication/329849901_High-power_high_repetition-rate_ultrafast_fibre_laser_based_source_of_DUV_radiation_at_266_nm

    [98] Ye H Y, Pontagnier L, Dixneuf C et al. Multi-GHz repetition rate, femtosecond deep ultraviolet source in burst mode derived from an electro-optic comb[J]. Optics Express, 28, 37209-37217(2020). http://www.researchgate.net/publication/347447502_Multi-GHz_repetition_rate_femtosecond_deep_ultraviolet_source_in_burst_mode_derived_from_an_electro-optic_comb

    [99] Jones M D, Massey G A. Milliwatt-level 213 nm source based on a repetitively Q-switched, CW-pumped Nd∶YAG laser[J]. IEEE Journal of Quantum Electronics, 15, 204-206(1979).

    [100] Wiechmann W, Liu L Y, Oka M et al. Efficient high-repetition-rate all-solid-state fifth harmonic generation from a diode-pumped Q-switched Nd∶YAG laser[C]. //1995 Conference on Lasers and Electro-Optics(CLEO), May 21-26, 1995, Baltimore, Maryland, United States, CPD19(1995).

    [101] Petersen A B, Nighan W L. High-repetition-rate UV generation with diode-pumped Nd∶YVO4 lasers[C]. //1995 Conference on Lasers and Electro-Optics(CLEO), May 21-26, 1995, Baltimore, Maryland, United States, CWG2(1995).

    [102] Wu R K, Myers M J, Myers J D et al. 560 mW, fifth harmonic (213 nm), 200 Hz flashlamp pumped Nd∶YAG laser system[C]. //1996 OSA Trends in Optics and Photonics Series, January 31, 1996, San Francisco, California, FC4(1996).

    [103] Yap Y K, Inagaki M, Nakajima S et al. High-power fourth-and fifth-harmonic generation of a Nd∶YAG laser by means of a CsLiB6O10[J]. Optics Letters, 21, 1348-1350(1996).

    [104] Yap Y K, Mori Y, Haramura S et al. High power all-solid-state ultraviolet laser by CLBO crystal[C]. //1997 Advanced Solid State Lasers, January 27, 1997, Orlando, Florida, US3(1997).

    [105] Masuda H, Kikuchi H, Mori H et al. Single frequency 0.5 W generation at 213 nm from an injection-seeded, diode-pumped, high-repetition-rate, Q-switched Nd∶YAG laser[C]. //1997 OSA Trends in Optics and Photonics Series, January 27, 1997, Orlando, Florida, United States, US1(1997).

    [106] Kung A H, Chen P J. Jr-i L, et al. Compact solid state UV laser for photochemistry and materials processing[J]. Proceedings of SPIE, 3272, 100-104(1998).

    [107] Jeffries T E, Jackson S E, Longerich H P. Application of a frequency quintupled Nd∶YAG source (λ=213 nm) for laser ablation inductively coupled plasma mass spectrometric analysis of minerals[J]. Journal of Analytical Atomic Spectrometry, 13, 935-940(1998). http://pubs.rsc.org/en/content/articlelanding/1998/ja/a801328d/unauth

    [108] Kokh A E, Mishchenko V, Antsygin V D et al. Growth and investigation of BBO crystals with improved characteristics for UV harmonic generation[J]. Proceedings of SPIE, 3610, 139-147(1999). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=977176

    [109] Chang L B, Wang S C, Kung A H. Numerical analysis of fifth-harmonic conversion of low-power pulsed Nd∶YAG laser with resonance of second harmonic[J]. Japanese Journal of Applied Physics, 42, 4318-4324(2003).

    [110] Wall K F, Smucz J S, Pati B et al. A quasi-continuous-wave deep ultraviolet laser source[J]. IEEE Journal of Quantum Electronics, 39, 1160-1169(2003).

    [111] Wang Z L, Alameh K, Zheng R. High-efficiency stable 213-nm generation for LASIK application[J]. Proceedings of SPIE, 5646, 200-205(2005). http://spie.org/x648.xml?product_id=568979

    [112] Katsura T, Kojima T, Kurosawa M et al. High-power, high-repetition UV beam generation with an all-solid-state laser[C]. //2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference, June 17-22, 2007, Munich, Germany., 1(2007).

    [113] Bykov S V, Mao M, Gares K L et al. Compact solid-state 213 nm laser enables standoff deep ultraviolet Raman spectrometer: measurements of nitrate photochemistry[J]. Applied Spectroscopy, 69, 895-901(2015).

    [114] Miyata K, Mohara M, Shimura K et al. Programmable deep-UV laser platform for inspection and metrology[J]. Optics Letters, 44, 5618-5621(2019). http://www.ncbi.nlm.nih.gov/pubmed/31730122

    [115] Willenberg B, Brunner F, Phillips C R et al. High-power picosecond deep-UV source via group velocity matched frequency conversion[J]. Optica, 7, 485-491(2020).

    [116] Chu Y X, Zhang X D, Chen B B et al. Picosecond high-power 213-nm deep-ultraviolet laser generation using β-BaB2O4 crystal[J]. Optics & Laser Technology, 134, 106657(2021).

    [117] Su X, Yao J, Wang Y N et al. Ultra-violet picosecond fiber-solid hybrid amplification laser[J]. Optics and Precision Engineering, 28, 2122-2128(2020).

    [118] Yoshioka K, Omachi J, Sakano M et al. Gigahertz-repetition-rate, narrowband-deep-ultraviolet light source for minimization of acquisition time in high-resolution angle-resolved photoemission spectroscopy[J]. Review of Scientific Instruments, 90, 123109(2019). http://www.ncbi.nlm.nih.gov/pubmed/31893766

    [119] Sohn Y J, Quintanilha R, Barnes B M et al. 193 nm angle-resolved scatter field microscope for semiconductor metrology[J]. Proceedings of SPIE, 7405, 74050R(2009).

    [120] Kirner R, Vetter A, Opalevs D et al. Mask-aligner lithography using a continuous-wave diode laser frequency-quadrupled to 193 nm[J]. Optics Express, 26, 730-743(2018). http://www.ncbi.nlm.nih.gov/pubmed/29401954

    [121] Wang L S, Li X, Zhang H F. Probing the electronic structure of iron clusters using photoelectron spectroscopy[J]. Chemical Physics, 262, 53-63(2000). http://www.sciencedirect.com/science/article/pii/S0301010400003517

    [122] Tanaka S, Arakawa M, Fuchimukai A et al. Development of high coherence high power 193 nm laser[J]. Proceedings of SPIE, 9726, 972624(2016). http://spie.org/x648.xml?product_id=2211210

    [123] Fujimoto J, Kobayashi M, Kakizaki K et al. 193nm high power lasers for the wide bandgap material processing[J]. Proceedings of SPIE, 10097, 100970T(2017). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2607013

    [124] Kanai T, Wang X Y, Adachi S et al. Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device[J]. Optics Express, 17, 8696-8703(2009).

    [125] Ringling J, Kittelmann O, Seifert F et al. Femtosecond solid state light sources tunable around 193 nm[J]. Proceedings of SPIE, 2116, 56-65(1994). http://spie.org/Publications/Proceedings/Paper/10.1117/12.175839

    [126] Horn I, Günther D, Guillong M. Evaluation and design of a solid-state 193 nm OPO-Nd∶YAG laser ablation system[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 58, 1837-1846(2003). http://www.sciencedirect.com/science/article/pii/S0584854703001630

    [127] Umemura N, Ando M, Suzuki K et al. 200-mW-average power ultraviolet generation at 0.193 microm in K2Al2B2O7[J]. Applied Optics, 42, 2716-2719(2003). http://europepmc.org/abstract/MED/12777008

    [128] Merriam A J, Bethune D S, Hoffnagle J A et al. A solid-state 193-nm laser with high spatial coherence for sub-40-nm interferometric immersion lithography[J]. Proceedings of SPIE, 6520, 65202Z(2007). http://spie.org/Publications/Proceedings/Paper/10.1117/12.712210

    [129] Sakuma J, Moriizumi K, Kusunose H. True CW 193.4-nm light generation based on frequency conversion of fiber amplifiers[J]. Optics Express, 19, 15020-15025(2011).

    [130] Koch P, Bartschke J, L'huillier J A. All solid-state 191.7 nm deep-UV light source by seventh harmonic generation of an 888 nm pumped, Q-switched 1342 nm Nd∶YVO4 laser with excellent beam quality[J]. Optics Express, 22, 13648-13658(2014).

    [131] Xuan H W, Zhao Z G, Igarashi H et al. 300-mW narrow-linewidth deep-ultraviolet light generation at 193 nm by frequency mixing between Yb-hybrid and Er-fiber lasers[J]. Optics Express, 23, 10564-10572(2015).

    [132] Xuan H W, Qu C, Zhao Z G et al. 1 W solid-state 193 nm coherent light by sum-frequency generation[J]. Optics Express, 25, 29172-29179(2017).

    Jiaqi Zheng, Zhenhua Cong, Zhaojun Liu, Shang Wang, Zhigang Zhao. Recent Trend of High Repetition Rate Ultrashort Laser Pulse Generation and Frequency Conversion[J]. Chinese Journal of Lasers, 2021, 48(12): 1201008
    Download Citation