• Chinese Journal of Lasers
  • Vol. 48, Issue 12, 1201008 (2021)
Jiaqi Zheng1, Zhenhua Cong1、2, Zhaojun Liu1、2, Shang Wang2, and Zhigang Zhao1、2、3、*
Author Affiliations
  • 1School of Information Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
  • 2Shandong Provincial Key Laboratory of Laser Technologies and Applications, Qingdao, Shandong 266237, China
  • 3State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • show less
    DOI: 10.3788/CJL202148.1201008 Cite this Article Set citation alerts
    Jiaqi Zheng, Zhenhua Cong, Zhaojun Liu, Shang Wang, Zhigang Zhao. Recent Trend of High Repetition Rate Ultrashort Laser Pulse Generation and Frequency Conversion[J]. Chinese Journal of Lasers, 2021, 48(12): 1201008 Copy Citation Text show less
    Schematic diagram of Kerr lens mode-locked cavity[25]. (a) Bow-tie ring cavity; (b) proposed compact linear cavity structure
    Fig. 1. Schematic diagram of Kerr lens mode-locked cavity[25]. (a) Bow-tie ring cavity; (b) proposed compact linear cavity structure
    Schematic diagram of 3.5 GHz laser repetition rate multiplier[29]
    Fig. 2. Schematic diagram of 3.5 GHz laser repetition rate multiplier[29]
    Schematic diagram of fiber ring cavity filter device with dispersion compensation[31]
    Fig. 3. Schematic diagram of fiber ring cavity filter device with dispersion compensation[31]
    Schematic of active fiber loop[33]
    Fig. 4. Schematic of active fiber loop[33]
    Schematic of pulse trains envelope shaping in active fiber loop[33]
    Fig. 5. Schematic of pulse trains envelope shaping in active fiber loop[33]
    Schematic diagram of GHz NIR and GHz DUV laser generation
    Fig. 6. Schematic diagram of GHz NIR and GHz DUV laser generation
    Schematic of 3 GHz 257 nm DUV laser[90]
    Fig. 7. Schematic of 3 GHz 257 nm DUV laser[90]
    Schematic of 14 W 266 nm DUV laser[94]
    Fig. 8. Schematic of 14 W 266 nm DUV laser[94]
    Schematic diagram of 20 W 258 nm DUV laser[93]
    Fig. 9. Schematic diagram of 20 W 258 nm DUV laser[93]
    Schematic diagram of GHz 258 nm DUV laser[98]
    Fig. 10. Schematic diagram of GHz 258 nm DUV laser[98]
    Current status of DUV lasers at 258 nm and 266 nm (repetition rate-energy)
    Fig. 11. Current status of DUV lasers at 258 nm and 266 nm (repetition rate-energy)
    Current status of DUV lasers at 258 nm and 266 nm (repetition rate-average power)
    Fig. 12. Current status of DUV lasers at 258 nm and 266 nm (repetition rate-average power)
    Schematic diagram for principle of FiHG “1+4”. o light is ordinary light, e light is extraordinary light
    Fig. 13. Schematic diagram for principle of FiHG “1+4”. o light is ordinary light, e light is extraordinary light
    Schematic diagram for principle of FiHG “2+3”. o light is ordinary light, e light is extraordinary light and DWWP is dual wavelength wave plate
    Fig. 14. Schematic diagram for principle of FiHG “2+3”. o light is ordinary light, e light is extraordinary light and DWWP is dual wavelength wave plate
    Current status of DUV lasers at 206 nm and 213 nm (repetition rate-energy)
    Fig. 15. Current status of DUV lasers at 206 nm and 213 nm (repetition rate-energy)
    Current status of DUV lasers at 206 nm and 213 nm (repetition rate-average power)
    Fig. 16. Current status of DUV lasers at 206 nm and 213 nm (repetition rate-average power)
    Schematic diagram of 2.5 W 206 nm DUV laser[115]
    Fig. 17. Schematic diagram of 2.5 W 206 nm DUV laser[115]
    Characterization of 2.5 W 206 nm DUV laser sum-frequency generation output at 2 W average power[115]. (a) Cross-correlation signal of 4ω and 1ω beams; (b) output power versus crystal angle θ-offset; (c) spectrum of output laser
    Fig. 18. Characterization of 2.5 W 206 nm DUV laser sum-frequency generation output at 2 W average power[115]. (a) Cross-correlation signal of 4ω and 1ω beams; (b) output power versus crystal angle θ-offset; (c) spectrum of output laser
    Schematic diagram of 1.37 W 213 nm DUV laser[116]
    Fig. 19. Schematic diagram of 1.37 W 213 nm DUV laser[116]
    Schematic diagram of 1.1 GHz 208.8 nm DUV laser[118]
    Fig. 20. Schematic diagram of 1.1 GHz 208.8 nm DUV laser[118]
    Schematic diagram of 1 W 193 nm DUV laser[129]
    Fig. 21. Schematic diagram of 1 W 193 nm DUV laser[129]
    YearWavelength /nmPulse widthOutput power /WRepetition rate /GHzRef. No.
    20101050180 fs201.30[44]
    20111050130 fs51.6[45]
    20121040890 fs1101.3[46]
    20141050300fs721.6[47]
    20181030800 fs-2ps201-18[48]
    20181030/1001.76[49]
    20191030480 fs1000.87[50]
    20201057473 fs1081.2[51]
    20201057868 fs1301.2[42]
    20201030310 fs1003.52[30]
    20201030233 fs971.08[36]
    Table 1. Research progresses of 1 μm band GHz repetition rate lasers[30, 36, 42, 44-51]
    CrystalLBOBBOCLBOKABOKBBFRBBF
    Lattice structureorthorhombic systemtrigonal systemtetragonal systemtrigonal systemtrigonal systemtrigonal system
    Space groupPna21R3C/P321R32R32
    Point groupmm2/////
    Lattice constant /(10-10 m)a=8.4473b=7.3788c=5.1395a=12.532b=12.532 a=10.494b=10.494c=8.939a=8.53b=8.53c=8.409a=4.427b=4.427c=20.356a=4.4341b=4.4341c=19.758
    Unit numbers in cellz=2z=6z=4///
    Melting point /℃8341095844.5110910301030
    Mohs hardness6445.5-6.52.662.66
    Mass density /(g·cm-3)2.473.852.452.472.412.40
    Hygroscopicitylowlowhighlowlowlow
    Wavelength range /nm160-2600189-3500180-2750180-3600155-3660160-3550
    Table 2. Properties of common nonlinear optical crystals[53-59]
    YearFundamental wavelength /nmFundamental power /WOutput wavelength /nmOutput powerPulse width /nsRepetition rateRef. No.
    200053210626620.5 W8010 kHz[60]
    2000106401.2226663 mW3212.5 kHz[61]
    20015324026612 W701 kHz[62]
    2002106472662.1 W225 kHz[63]
    2002106400.3226669 mW00.973.7 kHz[64]
    2002106408.74266196 mW1218 kHz[65]
    200315473.1258800 mW1200 kHz[66]
    200353220026640 W807 kHz[67]
    200653212026628.4 W8010 kHz[68]
    200910648126614.8 W10100 kHz[69]
    20091064522661.9 W1207.5 kHz[70]
    200910314025814 W15 MHz[71]
    2010106414.30266374 mW520 kHz[72]
    201010642.4266289 mW59.8020 kHz[73]
    20111064222662.1 W1005 kHz[74]
    20111064802665.05 W22.5065 kHz[75]
    201210641502663 W1010 kHz[76]
    2013106418.802661.82 W1630 kHz[77]
    20131030222583.2 W1530 kHz[78]
    2016106424.502663.3 W1.51 MHz[79]
    20161064102661.85 W1.720 kHz[80]
    201610303.62581.1 W2.514.5 kHz[81]
    201710303525810.5 W310 kHz[82]
    Table 3. Research progress of 258 nm and 266 nm nanosecond DUV lasers[60-82]
    YearFundamental wavelength /nmFundamental power /WOutput wavelength /nmOutput powerPulse width /psRepetition rateRef. No.
    2000106427.42664.5 W782 MHz[83]
    20111064222660.93 W2578 MHz[84]
    20131064152664.5 W72100 kHz[85]
    2015103027.42582.74 W8.41 kHz[86]
    20151064202662.9 W2080 MHz[87]
    20161030602586 W4100 kHz[88]
    20181064342661.6 W2580 MHz[89]
    20181030102573 mW1.83 GHz[90]
    20191030332587.6 W1.577 kHz[91]
    2019106426026650.1 W151 MHz[92]
    2020103027025820 W1.210 kHz[93]
    20201064/26614 W13200 kHz[94]
    Table 4. Research progress of 258 nm and 266 nm picosecond DUV lasers[83-94]
    YearFundamental wavelength /nmFundamental power /WOutput wavelength /nmOutput powerPulse width /fsRepetition rateRef. No.
    2010103011.52591 W262100 MHz[95]
    20171030402584.6 W150796 kHz[96]
    2019106404.8266616 mW26078 MHz[97]
    2020103010.4258523 mW50011.48 GHz[98]
    Table 5. Research progress of 258 nm and 266 nm femtosecond DUV lasers[95-98]
    YearFundamental wavelength /nmFundamental power /WOutput wavelength /nmOutput powerPulse widthRepetition rateRef. No.
    197910642.52132 mW80 ns4 kHz[99]
    199510646213400 mW37 ns7 kHz[100]
    19951064421331 mW20 ns20 kHz[101]
    1996106410213560 mW1.5 ns200 Hz[102]
    19961064222132.3 W7 ns10 Hz[103]
    19971064472134 W3 ns100 Hz[104]
    199710646.42130.5 W17.9 ns7 kHz[105]
    1998106402.13213100 mW/1 kHz[106]
    19991064421375 mW7 ns10 Hz[107]
    199910641213115mW/5 Hz[108]
    199910644213280 mW1.8 ns20 Hz[108]
    2000106427.402131.15 W7 ps82 MHz[83]
    200210647213540 mW/5 kHz[63]
    2002106400.3221318 mW/3.7 kHz[64]
    2003106472132 W/5 kHz[109]
    2003104715205250 mW/100 MHz[110]
    2005106472130.7 W7 ns20 Hz[111]
    2007106439521310.2 W/10 kHz[112]
    20151064/213100 mW15 ns30 kHz[113]
    20161030602060.8 W4 ps100 kHz[88]
    20191064242130.5 W40 ps120 MHz[114]
    20191030802061 W1.5 ps77 kHz[91]
    20201030652062.5 W1.6 ps100 kHz[115]
    20201064302131.37 W17 ps1 MHz[116]
    2020106410.5021361 mW690 ps5 MHz[117]
    Table 6. Research progress of 206 nm and 213 nm DUV lasers[63-64, 83, 88, 91, 99-117]
    YearPump wavelength (NIR) /nmPump wavelength (DUV) /nmOutput powerPulse widthRepetition rateRef. No.
    19947742580.8 mW170 fs1 kHz[125]
    20031547221140 mW1 ns200 kHz[66]
    200320742133 mW3.5 ns4 Hz[126]
    20031064235.8200 mW/10 kHz[127]
    2007708.626635 mW15 ns5 kHz[128]
    20111107234.311.6 mW/CW[129]
    20141342224240 mW12.2 ns10 kHz[130]
    20151553221310 mW10 ns6 kHz[131]
    201715532211.02 W3 ns10 kHz[132]
    Table 7. Research progress of 193 nm DUV lasers[66, 125-132]
    Jiaqi Zheng, Zhenhua Cong, Zhaojun Liu, Shang Wang, Zhigang Zhao. Recent Trend of High Repetition Rate Ultrashort Laser Pulse Generation and Frequency Conversion[J]. Chinese Journal of Lasers, 2021, 48(12): 1201008
    Download Citation