• Journal of Inorganic Materials
  • Vol. 35, Issue 9, 972 (2020)
Xiangtao BAI1, Liqing BAN2, and Weidong ZHUANG2
Author Affiliations
  • 1China Automotive Battery Research Institute Co., Ltd, Beijing 101407, China
  • 2General Research Institute for Nonferrous Metals, Beijing 100088, China
  • show less
    DOI: 10.15541/jim20190568 Cite this Article
    Xiangtao BAI, Liqing BAN, Weidong ZHUANG. Research Progress on Coating and Doping Modification of Nickel Rich Ternary Cathode Materials[J]. Journal of Inorganic Materials, 2020, 35(9): 972 Copy Citation Text show less
    References

    [1] S CHOI N, Z CHEN, A FREUNBERGER S. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed, 51, 9994-10024(2012).

    [2] W LIU, P OH, X LIU. Nickel-rich layered lithium transition- metal oxide for high energy lithium-ion batteries. Angew. Chem. Int. Ed, 54, 4440-4457(2015).

    [3] B SCROSATI, J GARCHE. Lithium batteries: status, prospects and future. J. Power Sources, 195, 2419-2430(2010).

    [5] S LEE K, T MYUNG S, K AMINE. Structural and electrochemical properties of layered Li[Ni1-2xCoxMnx]O2 ( x=0.1-0.3) positive electrode materials for Li-ion batteries. J. Electrochem. Soc, 154, A971-A977(2007).

    [6] S JOUANNEAU, D MACNEIL D, Z LU. Morphology and safety of Li[NixCo1-2xMnx ]O2 (0≤x≤1/2). J. Electrochem. Soc, 150, A1299-1304(2003).

    [7] D MACNEIL D, H LU Z, H CHEN Z. A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes. J. Power Sources, 108, 8-14(2002).

    [8] J KIM, H LEE, H CHA. Nickel-rich cathodes: prospect and reality of Ni-rich cathode for commercialization. Adv. Energy Mater, 8, 1702028(2018).

    [9] H XIONG X, X WANG Z, P YUE. Washing effects on electrochemical performance and storage characteristics of LiNi0.8Co0.1Mn0.1O2 as cathode material for lithium-ion batteries. J. Power Sources, 222, 318-325(2013).

    [10] S XU, X WANG, W ZHANG. The effects of washing on LiNi0.83Co0.13Mn0.04O2 cathode materials. J. Solid State Ionics, 334, 105-110(2019).

    [11] J LI, R CHEN B, M ZHOU H. Effects of washing and heat-treatment on structure and electrochemical charge/discharge property of LiNi0.8Co0.15Al0.05O2 powder. J. Inorg. Mater, 31, 773-778(2016).

    [12] Z XU S, F LUO G, R JACOBS. Ab initio modeling of electrolyte molecule ethylene carbonate decomposition reaction on Li(Ni, Mn, Co)O2 cathode surface. ACS Appl. Mater. Interfaces, 9, 20545-20553(2017).

    [13] T MYUNG S, K IZUMI, S KOMABA. Role of alumina coating on Li-Ni-Co-Mn-O particles as positive electrode material for lithium-ion batteries. Chem. Mater, 17, 3695-3704(2005).

    [14] J YU H, M QIAN Y, M OTANI. Study of the lithium/nickel ions exchange in the layered LiNi0.42Mn0.42Co0.16O2 cathode material for lithium ion batteries: experimental and first-principles calculations. Energy Environ. Sci, 7, 1068-1078(2014).

    [15] D AURBACH. Electrode-solution interactions in Li-ion batteries: a short summary and new insights. J. Power Sources, 497-503(2003).

    [16] T MYUNG S, K AMINE, K SUN Y. Surface modification of cathode materials from nano- to microscale for rechargeable lithium- ion batteries. J. Mater. Chem, 20, 7074-7095(2010).

    [17] S YOON W, J HANSON, J MCBREEN. A study on the newly observed intermediate structures during the thermal decomposition of nickel-based layered cathode materials using time-resolved XRD. Electrochem.Commun, 8, 859-862(2006).

    [18] H KONISHI, T YUASA, M YOSHIKAWA. Thermal stability of Li1-yNixMn(1-x)/2Co(1-x)/2O2 layer-structured cathode materials used in Li-ion batteries. J. Power Sources, 196, 6884-6888(2011).

    [19] M BAK S, Y HU E, N ZHOU Y. Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy. ACS Appl. Mater. Interfaces, 6, 22594-22601(2014).

    [20] K JUNG S, H GWON, J HONG. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Adv. Energy Mater, 4, 1300787(2014).

    [22] A MANTHIRAM, C KNIGHT J, T MYUNG S. Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives. Adv. Energy Mater, 6, 1501010(2016).

    [23] Z CHEN, D CHAO, J LIN. Recent progress in surface coating of layered LiNixCoyMnzO2 for lithium-ion batteries. Mater. Res. Bull, 96, 491-502(2017).

    [24] D AURBACH. The electrochemical behavior of lithium salt solutions of γ-butyrolactone with noble metal electrodes. J. Electrochem. Soc, 136, 906-913(1989).

    [25] K EDSTROM, T GUSTAFSSON, J THOMAS. The cathode- electrolyte interface in the Li-ion battery. Electrochim. Acta, 50, 397-403(2004).

    [26] D AURBACH. γ-butyrolactone solutions II. contaminated solutions. J. Electrochem. Soc, 136, 1611-1614(1989).

    [27] F LIN, M MARKUS I, D NORDLUND. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun, 5, 3529(2014).

    [28] J LI, H LIU, J XIA. The impact of electrolyte additives and upper cut-off voltage on the formation of a rocksalt surface layer in LiNi0.8Mn0.1Co0.1O2 electrodes. J. Electrochem. Soc, 164, A655-A665(2017).

    [29] Y SHI, H ZHANG M, N QIAN D. Ultrathin Al2O3 coatings for improved cycling performance and thermal stability of LiNi0.5Co0.2Mn0.3O2 cathode material. Electrochim. Acta, 203, 154-161(2016).

    [30] S NEUDECK, F STRAUSS, G GARCIA. Room temperature, liquid-phase Al2O3 surface coating approach for Ni-rich layered oxide cathode material. Chem. Commun, 55, 2174-2177(2019).

    [31] J VETTER, P NOVAK, R WAGNER M. Ageing mechanisms in lithium-ion batteries. J. Power Sources, 147, 269-281(2005).

    [32] D AURBACH, B MARKOVSKY, G SALITRA. Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries. J. Power Sources, 165, 491-499(2007).

    [33] W LIANG L, R HU G, F JIANG. Electrochemical behaviours of SiO2-coated LiNi0.8Co0.1Mn0.1O2 cathode materials by a novel modification method. J. Alloys Compd, 657, 570-581(2016).

    [34] G GAN Z, R HU G, D PENG Z. Surface modification of LiNi0.8Co0.1Mn0.1O2 by WO3 as a cathode material for LIB. Appl. Surf. Sci, 481, 1228-1238(2019).

    [35] P LI Y, J YAN G, M LUO L. Enhanced electrochemical performance of LiNi0.4Co0.2Mn0.4O2 cathode materials via Y2O3 coating. Mater. Res. Express, 6, 105533(2019).

    [36] M LOGHAVI M, H MOHAMMADI-MANESH, R EQRA. LiNi0.8Co0.15Al0.05O2 coated by chromium oxide as a cathode material for lithium-ion batteries. J Solid State Electrochem, 23, 2569-2578(2019).

    [37] T MYUNG S, K IZUMI, S KOMABA. Functionality of oxide coating for Li[Li0.05Ni0.4Co0.15Mn0.4]O2 as positive electrode materials for lithium-ion secondary batteries. J. Phys. Chem. C, 111, 4061-4067(2007).

    [38] X ZUO D, P WANG C, L TIAN G. Comparative study of Al2O3, SiO2 and TiO2-coated LiNi0.6Co0.2Mn0.2O2 electrode prepared by hydrolysis coating technology. J. Electrochem. Sci. Eng, 9, 85-97(2019).

    [39] C ZHU W, X HUANG, T LIU T. Ultrathin Al2O3 coating on LiNi0.8Co0.1Mn0.1O2 cathode material for enhanced cycleability at extended voltage ranges. Coatings, 9, 92(2019).

    [40] S NEUDECK, A MAZILKIN, C REITZ. Effect of low-temperature Al2O3 ALD coating on Ni-rich layered oxide composite cathode on the long-term cycling performance of lithium- ion batteries. Sci. Rep, 9, 5328(2019).

    [41] L CUI X, L AI, P MAO L. Enhanced electrochemical properties of LiNi0.6Co0.2Mn0.2O2 cathode material by the diffusional Al2O3 coating layer. Ionics, 25, 411-419(2019).

    [42] K YANG, Z FAN L, J GUO. Significant improvement of electrochemical properties of AlF3-coated LiNi0.5Co0.2Mn0.3O2 cathode materials. Electrochim. Acta, 63, 363-368(2012).

    [43] H LEE S, S YOON C, K AMINE. Improvement of long-term cycling performance of Li[Ni0.8Co0.15Al0.05]O2 by AlF3 coating. J. Power Sources, 234, 201-207(2013).

    [44] Y CHO, P OH, J CHO. A new type of protective surface layer for high-capacity Ni-based cathode materials: nanoscaled surface pillaring layer. Nano Lett, 13, 1145-1152(2013).

    [45] L HAN B, C LU X. Effect of nano-sized CeF3 on microstructure, mechanical, high temperature friction and corrosion behavior of Ni-W composite coatings. Surf. Coat. Technol, 203, 3656-3660(2009).

    [46] A KUMAR D, S SELVASEKARAPANDIAN, H NITHYA. Structural and conductivity analysis on cerium fluoride nanoparticles prepared by sonication assisted method. Solid State Sci, 14, 626-634(2012).

    [47] A KUMAR D, S SELVASEKARAPANDIAN, H NITHYA. Influence of substrate temperature on CeF3 thin films prepared by thermal evaporation. Mater. Chem. Phys, 143, 765-772(2014).

    [48] Y XIE, D GAO, L ZHANG L. CeF3-modified LiNi1/3Co1/3Mn1/3O2 cathode material for high-voltage Li-ion batteries. Ceram. Int, 42, 14587-14594(2016).

    [49] G SONG H, B KIM S, J PARK Y. Enhanced electrochemical properties of Li[Ni0.5Co0.2Mn0.3]O2 cathode by surface coating using LaF3 and MgF2. J. Electroceram, 29, 163-169(2012).

    [50] C DAI S, J YAN G, L WANG. Enhanced electrochemical performance and thermal properties of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material via CaF2 coating. J. Electroanal. Chem, 847, 113197(2019).

    [51] J LIM Y, M LEE S, H LIM. Amorphous Li-Zr-O layer coating on the surface of high-Ni cathode materials for lithium ion batteries. Electrochim. Acta, 282, 311-316(2018).

    [52] J LIU S, H WU, L HUANG. Synthesis of Li2Si2O5-coated LiNi0.6Co0.2Mn0.2O2 cathode materials with enhanced high-voltage electrochemical properties for lithium-ion batteries. J. Alloys Compd, 674, 447-454(2016).

    [53] H JO C, H CHO D, J NOH H. An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer. Nano Res, 8, 1464-1479(2015).

    [54] J ZHU, J LI Y, L XUE L. Enhanced electrochemical performance of Li3PO4 modified Li[Ni0.8Co0.1Mn0.1]O2 cathode material via lithium-reactive coating. J. Alloys Compd, 773, 112-120(2019).

    [55] L FAN Q, D YANG S, J LIU. Mixed-conducting interlayer boosting the electrochemical performance of Ni-rich layered oxide cathode materials for lithium ion batteries. J. Power Sources, 421, 91-99(2019).

    [56] Q BAN L, P YIN Y, D ZHUANG W. Electrochemical performance improvement of Li1.2[Mn0.54Ni0.13Co0.13]O2 cathode material by sulfur incorporation. Electrochim. Acta, 180, 218-226(2015).

    [57] Q HUANG Y, H HUANG Y, L HU X. Enhanced electrochemical performance of LiNi0.8Co0.15Al0.05O2 by nanoscale surface modification with Co3O4. Electrochim. Acta, 231, 294-299(2017).

    [58] S XU, Y DU C, X XU. A mild surface washing method using protonated polyaniline for Ni-rich LiNi0.8Co0.1Mn0.1O2 material of lithium ion batteries. Electrochim. Acta, 248, 534-540(2017).

    [59] S HE X, K HAN G, F LOU S. Improved electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode material by coating of graphene nanodots. J. Electrochem. Soc, 166, A1038-A1044(2019).

    [60] H YANG, P WU K, R HU G. Design and synthesis of double- functional polymer composite layer coating to enhance the electrochemical performance of the Ni-rich cathode at the upper cutoff voltage. ACS Appl. Mater. Interfaces, 11, 8556-8566(2019).

    [61] M GAN Q, N QIN, H ZHU Y. Polyvinylpyrrolidone-induced uniform surface-conductive polymer coating endows Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced cyclability for lithium-ion batteries. ACS Appl. Mater. Interfaces, 11, 12594-12604(2019).

    [65] S ZHANG S, J CHEN, S WANG C. Elemental sulfur as a cathode additive for enhanced rate capability of layered lithium transition metal oxides. J. Electrochem. Soc, 166, A487-A492(2019).

    [66] S ZHANG S, L FAN X, S WANG C. Enhanced electrochemical performance of Ni-rich layered cathode materials by using LiPF6 as a cathode additive. ChemElectroChem, 6, 1536-1541(2019).

    [67] J LI, E DOWNIE L, L MA. Study of the failure mechanisms of LiNi0.8Mn0.1Co0.1O2 cathode material for lithium ion batteries. J. Electrochem. Soc, 162, A1401-A1408(2015).

    [68] H LIU, M WOLF, K KARKI. Intergranular cracking as a major cause of long-term capacity fading of layered cathodes. Nano Lett, 17, 3452-3457(2017).

    [69] Y ZHAO E, M CHEN M, B HU Z. Improved cycle stability of high-capacity Ni-rich LiNi0.8Mn0.1Co0.1O2 at high cut-off voltage by Li2SiO3 coating. J. Power Sources, 343, 345-353(2017).

    [70] J PENG Z, W YANG G, Q LI F. Improving the cathode properties of Ni-rich LiNi0.6Co0.2Mn0.2O2 at high voltages under 5C by Li2SiO3 coating and Si4+ doping. J. Alloys Compd, 762, 827-834(2018).

    [71] W LEE S, S KIM M, H JEONG J. Li3PO4 surface coating on Ni-rich LiNi0.6Co0.2Mn0.2O2 by a citric acid assisted Sol-Gel method: improved thermal stability and high-voltage performance. J. Power Sources, 360, 206-214(2017).

    [72] B KIM S, J LEE K, J CHOI W. Preparation and cycle performance at high temperature for Li[Ni0.5Co0.2Mn0.3]O2 coated with LiFePO4. J. Solid State Electrochem, 14, 919-922(2010).

    [73] Z WU Z, P JI S, C LIU T. Aligned Li+ tunnels in core-shell Li(NixMnyCoz)O2@LiFePO4 enhances its high voltage cycling stability as Li-ion battery cathode. Nano Lett, 16, 6357-6363(2016).

    [74] L ZHU, F YAN T, D JIA. LiFePO4-coated LiNi0.5Co0.2Mn0.3O2 cathode materials with improved high voltage electrochemical performance and enhanced safety for lithium ion pouch cells. J. Electrochem. Soc, 166, A5437-A5444(2019).

    [75] S KIM W, B KIM S, C JANG I. Remarkable improvement in cell safety for Li[Ni0.5Co0.2Mn0.3]O2 coated with LiFePO4. J. Alloys Compd, 492, L87-L90(2010).

    [76] J DIAO R, P NAYAKA G, Y ZHU C. CePO4 coated LiNi0.6Co0.2Mn0.2O2 as cathode material and its electrochemical performance. Int. J. Electrochem. Sci, 14, 8070-8079(2019).

    [77] H TONG, Y DONG P, F ZHANG J. Cathode material LiNi0.8Co0.1Mn0.1O2/LaPO4 with high electrochemical performance for lithium-ion batteries. J. Alloys Compd, 764, 44-50(2018).

    [78] M LIU W, R HU G, K DU. Surface coating of LiNi0.8Co0.15Al0.05O2 with LiCoO2 by a molten salt method. Surf. Coat. Tech, 216, 267-272(2013).

    [79] M LIU W, R HU G, K DU. Synthesis and characterization of LiCoO2-coated LiNi0.8Co0.15Al0.05O2 cathode materials. Mater. Lett, 83, 11-13(2012).

    [80] M LIU W, R HU G, K DU. Enhanced storage property of LiNi0.8Co0.15Al0.05O2 coated with LiCoO2. J. Power Sources, 230, 201-206(2013).

    [81] F YAN P, M ZHENG J, M GU. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun, 8, 14101(2017).

    [82] S HASHIGAMI, Y KATO, K YOSHIMI. Influence of lithium silicate coating on retarding crack formation in LiNi0.5Co0.2Mn0.3O2 cathode particles. Electrochim. Acta, 291, 304-310(2018).

    [83] L DU M, P YANG, X HE W. Enhanced high-voltage cycling stability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode coated with Li2O-2B2O3. J. Alloys Compd, 805, 991-998(2019).

    [84] S HASHIGAMI, K YOSHIMI, Y KATO. Improvement of cycleability and rate-capability of LiNi0.5Co0.2Mn0.3O2 cathode materials coated with lithium boron oxide by an antisolvent precipitation method. ChemistrySelect, 4, 8676-8681(2019).

    [85] Y ZHANG J, Y CAO, X OU. Constituting the NASICON type solid electrolyte coated material forming anti-high voltage system to enhance the high cut-off voltage performance of LiNi0.6Co0.2Mn0.2O2via charge attracts electrostatic assembly. J. Power Sources, 436, 226722(2019).

    [86] K PARK, H PARK J, G HONG S. Enhancement in the electrochemical performance of zirconium/phosphate bi-functional coatings on LiNi0.8Co0.15Mn0.05O2 by the removal of Li residuals. Phys. Chem. Chem. Phys, 18, 29076-29085(2016).

    [87] S HE X, X XU, G WANG L. Enhanced electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode material via Li2TiO3 nanoparticles coating. J. Electrochem. Soc, 166, A143-A150(2019).

    [88] J YANG, Y YU Z, B YANG. Electrochemical characterization of Cr8O21 modified LiNi0.5Co0.2Mn0.3O2 cathode material. Electrochim. Acta, 266, 342-347(2018).

    [89] P GAO T, W WONG K, Y FUNG K. A rational three-step calcination strategy for synthesizing high-quality LiNi0.5Mn0.3Co0.2O2 cathode materials: the key role of suppressing Li2O formation. Electrochim. Acta, 288, 153-164(2018).

    [90] D BHUVANESWARI, G BABU, N KALAISELVI. Effect of surface modifiers in improving the electrochemical behavior of LiNi0.4Mn0.4Co0.2O2 cathode. Electrochim. Acta, 109, 684-693(2013).

    [91] D WANG, H LI X, X WANG Z. Role of zirconium dopant on the structure and high voltage electrochemical performances of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Electrochim. Acta, 188, 48-56(2016).

    [92] C POUILLERIE, L CROGUENNEC, P BIENSAN. Synthesis and characterization of new LiNi1-yMgyO2 positive electrode materials for lithium-ion batteries. J. Electrochem. Soc, 147, 2061-2069(2000).

    [93] Q XIE, D LI W, A MANTHIRAM. A Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density Li-ion batteries. Chem. Mater, 31, 938-946(2019).

    [94] C POUILLERIE, L CROGUENNEC, C DELMAS. The LixNi1-yMgyO2 (y=0.05, 0.10) system: structural modifications observed upon cycling. Solid State Ionics, 132, 15-29(2000).

    [95] B HUANG, H LIN X, X WANG Z. Synthesis of Mg-doped LiNi0.8Co0.15Al0.05O2 oxide and its electrochemical behavior in high-voltage lithium-ion batteries. Ceram. Int, 40, 13223-13230(2014).

    [96] O BREUER, A CHAKRABORTY, J LIU. Understanding the role of minor molybdenum doping in LiNi0.5Co0.2Mn0.3O2 electrodes: from structural and surface analyses and theoretical modeling to practical electrochemical cells. ACS Appl. Mater. Interfaces, 10, 29608-29621(2018).

    [97] U WOO S, C PARK B, S YOON C. Improvement of electrochemical performances of Li[Ni0.8Co0.1Mn0.1]O2 cathode materials by fluorine substitution. J. Electrochem. Soc, 154, A649-A655(2007).

    [98] L LI C, H KAN W, L XIE H. Inducing favorable cation antisite by doping halogen in Ni-rich layered cathode with ultrahigh stability. Adv. Sci, 6, 1801406(2019).

    [99] X LI, W XIE Z, J LIU W. Effects of fluorine doping on structure, surface chemistry, and electrochemical performance of LiNi0.8Co0.15Al0.05O2. Electrochim. Acta, 174, 1122-1130(2015).

    [100] J LÜ C, J YANG, Y PENG. 1D Nb-doped LiNi1/3Co1/3Mn1/3O2 nanostructures as excellent cathodes for Li-ion battery. Electrochim. Acta, 297, 258-266(2019).

    [101] G YANG Z, W XIANG, G WU Z. Effect of niobium doping on the structure and electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Ceram. Int, 43, 3866-3872(2017).

    [102] F WU J, G LIU H, H YE X. Effect of Nb doping on electrochemical properties of LiNi1/3Co1/3Mn1/3O2 at high cutoff voltage for lithium-ion battery. J. Alloys Compd, 644, 223-227(2015).

    [103] J BREGER, S MENG Y, Y HINUMA. Effect of high voltage on the structure and electrochemistry of LiNi0.5Mn0.5O2: a joint experimental and theoretical study. Chem. Mater, 18, 4768-4781(2006).

    [104] F SCHIPPER, M DIXIT, D KOVACHEVA. Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2. J. Mater. Chem. A, 4, 16073-16084(2016).

    [105] D DONG S, Y ZHOU, X HAI C. Ultrathin CeO2 coating for improved cycling and rate performance of Ni-rich layered LiNi0.7Co0.2Mn0.1O2 cathode materials. Ceram. Int, 45, 144-152(2019).

    [106] X CHEN Y, J LI Y, W LI. High-voltage electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material via the synergetic modification of the Zr/Ti elements. Electrochim. Acta, 281, 48-59(2018).

    [107] R DU, Y BI, W YANG. Improved cyclic stability of LiNi0.8Co0.1Mn0.1O2via Ti substitution with a cut-off potential of 4.5 V. Ceram. Int, 41, 7133-7139(2015).

    [108] H PARK S, W OH S, SUN, K Y. Synthesis and structural characterization of layered Li[Ni1/3+xCo1/3Mn1/3-2xMox]O2 cathode materials by ultrasonic spray pyrolysis. J. Power Sources, 146, 622-625(2005).

    [109] J YANG, Y XIA Y. Suppressing the phase transition of the layered Ni-rich oxide cathode during high-voltage cycling by introducing low-content Li2MnO3. ACS Appl. Mater. Interfaces, 8, 1297-1308(2016).

    [110] M BAK S, W NAM K, W CHANG. Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials. Chem. Mater, 25, 337-351(2013).

    [111] K MIN, W SEO S, Y SONG Y. A first-principles study of the preventive effects of Al and Mg doping on the degradation in LiNi0.8Co0.1Mn0.1O2 cathode materials. Phys. Chem. Chem. Phys, 19, 1762-1769(2017).

    [112] M DIXIT, B MARKOVSKY, D AURBACH. Unraveling the effects of Al doping on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 using first principles. J. Electrochem. Soc, 164, A6359-A6365(2017).

    [113] H XIAO P, Q DENG Z, A MANTHIRAM. Calculations of oxygen stability in lithium-rich layered cathodes. J. Phys. Chem. C, 116, 23201-23204(2012).

    [114] D AURBACH, O SRUR-LAVI, C GHANTY. Studies of aluminum-doped LiNi0.5Co0.2Mn0.3O2: electrochemical behavior, aging, structural transformations, and thermal characteristics. J. Electrochem. Soc, 162, A1014-A1027(2015).

    [115] H KIM U, W JUN D, J PARK K. Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries. Energy Environ. Sci, 11, 1271-1279(2018).

    [116] H KONISHI, M YOSHIKAWA, T HIRANO. The effect of thermal stability for high-Ni-content layer-structured cathode materials, LiNi0.8Mn0.1-xCo0.1MoxO2 (x=0, 0.02, 0.04). J. Power Sources, 244, 23-28(2013).

    [117] Q LIU, K ZHAO Z, F WU. The effects of molybdenum doping on LiNi0.6Co0.2Mn0.2O2 cathode material. Solid State Ionics, 337, 107-114(2019).

    [118] T WEIGEL, F SCHIPPER, M ERICKSON E. Structural and electrochemical aspects of LiNi0.8Co0.1Mn0.1O2 cathode materials doped by various cations. ACS Energy Lett, 4, 508-516(2019).

    [119] W XIANG, Q ZHU C, J ZHANG. Synergistic coupling effect of sodium and fluorine co-substitution on enhancing rate capability and cycling performance of Ni-rich cathode for lithium ion battery. J. Alloys Compd, 786, 56-64(2019).

    [120] G HU, M ZHANG, L LIANG. Mg-Al-B co-substitution LiNi0.5Co0.2Mn0.3O2 cathode materials with improved cycling performance for lithium-ion battery under high cutoff voltage. Electrochim. Acta, 190, 264-275(2016).

    [121] H CHANG S, X CHEN Y, J LI Y. Improvement of the high-voltage electrochemical properties of Li[Ni0.5Co0.2Mn0.3]O2@ZrO2 cathode materials with liquid phase modification. J. Alloys Compd, 781, 496-503(2019).

    [122] X LI, J ZHANG K, S WANG M. Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2. Sustain. Energ. Fuels, 2, 413-421(2018).

    [123] T HE, Y LU, F SU Y. Sufficient utilization of zirconium ions to improve the structure and surface properties of nickel-rich cathode materials for lithium-ion batteries. ChemSusChem, 11, 1639-1648(2018).

    [124] K SUN Y, H KIM D, S YOON C. A novel cathode material with a concentration-gradient for high-energy and safe lithium- ion batteries. Adv. Funct. Mater, 20, 485-491(2010).

    [125] X XU, Y JIAN J, Z XIANG L. Enhancing high-voltage performances of nickel-based cathode material via aluminum and progressive concentration gradient modification. Electrochim. Acta, 317, 459-467(2019).

    [126] L SHI J, R QI, D ZHANG X. High-thermal- and air-stability cathode material with concentration-gradient buffer for Li-ion batteries. ACS Appl. Mater. Interfaces, 9, 42829-42835(2017).

    [127] J TANG M, J YANG, T CHEN N. Overall structural modification of a layered Ni-rich cathode for enhanced cycling stability and rate capability at high voltage. J. Mater. Chem. A, 7, 6080-6089(2019).

    [128] W RAN Q, Y ZHAO H, Q WANG. Dual functions of gradient phosphate polyanion doping on improving the electrochemical performance of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode at high cut-off voltage and high temperature. Electrochim. Acta, 299, 971-978(2019).

    [129] L ZHANG M, Y ZHAO H, M TAN. Yttrium modified Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced electrochemical performance as high energy density cathode material at 4.5 V high voltage. J. Alloys Compd, 774, 82-92(2019).

    [130] J TANG W, X CHEN Z, F XIONG. An effective etching- induced coating strategy to shield LiNi0.8Co0.1Mn0.1O2 electrode materials by LiAlO2. J. Power Sources, 412, 246-254(2019).

    [131] F YU H, G LI Y, J HU Y. 110th anniversary: concurrently coating and doping high-valence vanadium in nickel-rich lithiated oxides for high-rate and stable lithium-ion batteries. Ind. Eng. Chem. Res, 58, 4108-4115(2019).

    [132] X CHEN Y, J LI Y, Y TANG S. Enhanced electrochemical properties of the Cd-modified LiNi0.6Co0.2Mn0.2O2 cathode materials at high cut-off voltage. J. Power Sources, 395, 403-413(2018).

    [133] F KONG D, T HU J, F CHEN Z. Ti-gradient doping to stabilize layered surface structure for high performance high-Ni oxide cathode of Li-ion battery. Adv. Energy Mater, 9, 1901756(2019).

    [134] B HAN, S XU, S ZHAO. Enhancing the structural stability of Ni-rich layered oxide cathodes with a preformed Zr-concentrated defective nanolayer. ACS Appl. Mater. Interfaces, 10, 39599-39607(2018).

    [135] F SCHIPPER, H BOUZAGLO, M DIXIT. From surface ZrO2 coating to bulk Zr doping by high temperature annealing of nickel-rich lithiated oxides and their enhanced electrochemical performance in lithium ion batteries. Adv. Energy Mater, 8, 1701682(2018).

    [136] K MENG, X WANG Z, J GUO H. Improving the cycling performance of LiNi0.8Co0.1Mn0.1O2 by surface coating with Li2TiO3. Electrochim. Acta, 211, 822-831(2016).

    [137] F WU, Q LI, L CHEN. Use of Ce to reinforce the interface of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium-ion batteries under high operating voltage. ChemSusChem, 12, 935-943(2019).

    [138] W ZHAN X, S GAO, T CHENG Y. Influence of annealing atmosphere on Li2ZrO3-coated LiNi0.6Co0.2Mn0.2O2 and its high-voltage cycling performance. Electrochim. Acta, 300, 36-44(2019).

    [140] D WANG, H LI X, X WANG Z. Co-modification of LiNi0.5Co0.2Mn0.3O2 cathode materials with zirconium substitution and surface polypyrrole coating: towards superior high voltage electrochemical performances for lithium ion batteries. Electrochim. Acta, 196, 101-109(2016).

    [141] P YANG H, H WU H, Y GE M. Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium- ion batteries. Adv. Funct. Mater, 29, 1808825(2019).

    [142] W RAN Q, Y ZHAO H, H SHU X. Enhancing the electrochemical performance of Ni-rich layered oxide cathodes by combination of the gradient doping and dual-conductive layers coating. ACS Appl. Energy Mater, 2, 3120-3130(2019).

    [143] M SUN S, T LIU, H NIU Q. Improvement of superior cycle performance of LiNi0.8Co0.15Al0.05O2 cathode for lithium-ion batteries by multiple compound modifications. J. Electroanal. Chem, 838, 178-185(2019).

    [145] L XU G, Q LIU, K S LAU K et al. Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nat. Energy, 4, 484-494(2019).

    Xiangtao BAI, Liqing BAN, Weidong ZHUANG. Research Progress on Coating and Doping Modification of Nickel Rich Ternary Cathode Materials[J]. Journal of Inorganic Materials, 2020, 35(9): 972
    Download Citation