• Opto-Electronic Engineering
  • Vol. 44, Issue 3, 276 (2017)
[in Chinese]1、2, [in Chinese]1、2, and [in Chinese]1、2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1003-501x.2017.03.002.1 Cite this Article
    [in Chinese], [in Chinese], [in Chinese]. Research advances of hyperbolic metamaterials and metasurfaces[J]. Opto-Electronic Engineering, 2017, 44(3): 276 Copy Citation Text show less
    References

    [1] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966–3969.

    [2] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77–79.

    [3] Naik G V, Saha B, Liu Jing, et al. Epitaxial superlattices with titanium nitride as a plasmonic component for optical hy-perbolic metamaterials[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(21): 7546–7551.

    [4] Esfandyarpour M, Garnett E C, Cui Yi, et al. Metamaterial mirrors in optoelectronic devices[J]. Nature Nanotechnology, 2014, 9(7): 542–547.

    [5] Forati E, Hanson G W, Yakovlev A B, et al. Planar hyperlens based on a modulated graphene monolayer[J]. Physical Review B, 2014, 89(8): 081410.

    [6] Jacob Z, Alekseyev L V, Narimanov E. Optical hyperlens: far-field imaging beyond the diffraction limit[J]. Optics Express, 2006, 14(18): 8247–8256.

    [7] Liu Zhaowei, Lee H, Xiong Yi, et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects[J]. Science, 2007, 315(5819): 1686.

    [8] Narimanov E E, Shalaev V M. Optics: beyond diffraction[J]. Nature, 2007, 447(7142): 266–267.

    [9] Rho J, Ye Ziliang, Xiong Yi, et al. Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequen-cies[J]. Nature Communications, 2010, 1: 143.

    [10] Yao Jie, Yang Xiaodong, Yin Xiaobo, et al. Three-dimensional nanometer-scale optical cavities of indefinite medium[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(28): 11327–11331.

    [11] Jacob Z, Smolyaninov I I, Narimanov E E. Broadband Purcell effect: radiative decay engineering with metamaterials[J]. Applied Physics Letters, 2012, 100(18): 181105.

    [12] Gomez-Diaz J S, Alù A. Flatland optics with hyperbolic metasurfaces[J]. ACS Photonics, 2016, 3(12): 2211–2224.

    [13] Poddubny A, Iorsh I, Belov P, et al. Hyperbolic metamateri-als[J]. Nature Photonics, 2013, 7(12): 948–957.

    [14] Lu D, Kan J J, Fullerton E E, et al. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials[J]. Nature Nanotechnology, 2014, 9(1): 48–53.

    [15] Hoffman A J, Alekseyev L, Howard S S, et al. Negative re-fraction in semiconductor metamaterials[J]. Nature Materials, 2007, 6(12): 946–950.

    [16] Liu Yongmin, Bartal G, Zhang Xiang. All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region[J]. Optics Express, 2008, 16(20): 15439–15448.

    [17] Yao Jie, Wang Yuan, Tsai K T, et al. Design, fabrication and characterization of indefinite metamaterials of nanowires[J]. Philosophical Transactions of the Royal Society A: Mathe-matical, Physical and Engineering Sciences, 2011, 369(1950): 3434–3446.

    [18] Yao Jie, Liu Zhaowei, Liu Yongmin, et al. Optical negative refraction in bulk metamaterials of nanowires[J]. Science, 2008, 321(5891): 930.

    [19] Choy T C. Effective Medium Theory: Principles and Applica-tions[M]. 2nd ed. New York: Oxford University Press, 2015.

    [20] Wood B, Pendry J B, Tsai D P. Directed subwavelength imaging using a layered metal-dielectric system[J]. Physical Review B, 2006, 74(11): 115116.

    [21] Ferrari L, Wu C, Lepage D, et al. Hyperbolic metamaterials and their applications[J]. Progress in Quantum Electronics, 2015, 40: 1–40.

    [22] Jacob Z, Kim J Y, Naik G V, et al. Engineering photonic density of states using metamaterials[J]. Applied Physics B, 2010, 100(1): 215–218.

    [23] Kim J, Drachev V P, Jacob Z, et al. Improving the radiative decay rate for dye molecules with hyperbolic metamaterials[J]. Optics Express, 2012, 20(7): 8100–8116.

    [24] Shalaginov M Y, Ishii S, Liu J, et al. Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials[J]. Applied Physics Letters, 2013, 102(17): 173114.

    [25] Ni X, Naik G V, Kildishev A V, et al. Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions[J]. Applied Physics B, 2011, 103(3): 553–558.

    [26] Sreekanth K V, Biaglow T, Strangi G. Directional spontaneous emission enhancement in hyperbolic metamaterials[J]. Journal of Applied Physics, 2013, 114(13): 134306.

    [27] Tumkur T, Zhu G, Black P, et al. Control of spontaneous emission in a volume of functionalized hyperbolic metamate-rial[J]. Applied Physics Letters, 2011, 99(15): 151115.

    [28] Tumkur T U, Gu Lei, Kitur J K, et al. Control of absorption with hyperbolic metamaterials[J]. Applied Physics Letters, 2012, 100(16): 161103.

    [29] Krishnamoorthy H N S, Jacob Z, Narimanov E, et al. Topo-logical transitions in metamaterials[J]. Science, 2012, 336(6078): 205–209.

    [30] Naik G V, Liu Jingjing, Kildishev A V, et al. Demonstration of Al: ZnO as a plasmonic component for near-infrared metamate-rials[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(23): 8834–8838.

    [31] Yang Xiaodong, Yao Jie, Rho J, et al. Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws[J]. Nature Photonics, 2012, 6(7): 450–454.

    [32] Evans P, Hendren W R, Atkinson R, et al. Growth and prop-erties of gold and nickel nanorods in thin film alumina[J]. Nanotechnology, 2006, 17(23): 5746–5753.

    [33] Noginov M A, Li H, Barnakov Y A, et al. Controlling sponta-neous emission with metamaterials[J]. Optics Letters, 2010, 35(11): 1863–1865.

    [34] Nefedov I S. Electromagnetic waves propagating in a periodic array of parallel metallic carbon nanotubes[J]. Physical Re-view B, 2010, 82(15): 155423.

    [35] Sun Jingbo, Zhou Ji, Li Bo, et al. Indefinite permittivity and negative refraction in natural material: graphite[J]. Applied Physics Letters, 2011, 98(10): 101901.

    [36] Wurtz G A, Pollard R, Hendren W, et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality[J]. Nature Nanotechnology, 2011, 6(2): 107–111.

    [37] Kabashin A V, Evans P, Pastkovsky S, et al. Plasmonic na-norod metamaterials for biosensing[J]. Nature Materials, 2009, 8(11): 867–871.

    [38] Parazzoli C G, Greegor R B, Li K, et al. Experimental verifi-cation and simulation of negative index of refraction using Snell's law[J]. Physical Review Letters, 2003, 90(10): 107401.

    [39] Smith D R, Schurig D. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors[J]. Physical Review Letters, 2003, 90(7): 077405.

    [40] Cubukcu E, Aydin K, Ozbay E, et al. Electromagnetic waves: negative refraction by photonic crystals[J]. Nature, 2003, 423(6940): 604–605.

    [41] Parimi P V, Lu Wentao, Vodo P, et al. Photonic crystals: imaging by flat lens using negative refraction[J]. Nature, 2003, 426(6965): 404.

    [42] Berrier A, Mulot M, Swillo M, et al. Negative refraction at infrared wavelengths in a two-dimensional photonic crystal[J]. Physical Review Letters, 2004, 93(7): 073902.

    [43] Schonbrun E, Wu Qi, Park W, et al. Wave front evolution of negatively refracted waves in a photonic crystal[J]. Applied Physics Letters, 2007, 90(4): 041113.

    [44] Wangberg R, Elser J, Narimanov E E, et al. Nonmagnetic nanocomposites for optical and infrared negative-refractive- index media[J]. Journal of the Optical Society of America B, 2006, 23(3): 498–505.

    [45] Salandrino A, Engheta N. Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simula-tions[J]. Physical Review B, 2006, 74(7): 075103.

    [46] Silveirinha M G, Belov P A, Simovski C R. Subwavelength imaging at infrared frequencies using an array of metallic nanorods[J]. Physical Review B, 2007, 75(3): 035108.

    [47] Lu D, Liu Zhaowei. Hyperlenses and metalenses for far-field super-resolution imaging[J]. Nature Communications, 2012, 3: 1205.

    [48] Lin Dianmin, Fan Pengyu, Hasman E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298–302.

    [49] Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwave-length spatial resolution and high transmission[J]. Nature Nanotechnology, 2015, 10(11): 937–943.

    [50] Yu Nanfang, Capasso F. Flat optics with designer metasur-faces[J]. Nature Materials, 2014, 13(2): 139–150.

    [51] Yu Nanfang, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337.

    [52] Khorasaninejad M, Chen Weiting, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190–1194.

    [53] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125): 1232009.

    [54] Sun Shulin, He Qiong, Xiao Shiyi, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426–431.

    [55] Genevet P, Lin Jiao, Kats M A, et al. Holographic detection of the orbital angular momentum of light with plasmonic photo-diodes[J]. Nature Communications, 2012, 3: 1278.

    [56] Lin Jiao, Mueller J P B, Wang Qian, et al. Polariza-tion-controlled tunable directional coupling of surface Plas-mon polaritons[J]. Science, 2013, 340(6130): 331–334.

    [57] Gomez-Diaz J S, Tymchenko M, Alù A. Hyperbolic metasur-faces: surface plasmons, light-matter interactions, and physical implementation using graphene strips [Invited][J]. Optical Materials Express, 2015, 5(10): 2313–2329.

    [58] Gomez-Diaz J S, Tymchenko M, Alù A. Hyperbolic plasmons and topological transitions over uniaxial metasurfaces[J]. Physical Review Letters, 2015, 114(23): 233901.

    [59] Belashchenko K D, van Schilfgaarde M, Antropov V P. Co-existence of covalent and metallic bonding in the boron in-tercalation superconductor MgB2[J]. Physical Review B, 2001, 64(9): 092503.

    [60] Guritanu V, Kuzmenko A B, van der Marel D, et al. Anisotropic optical conductivity and two colors of MgB2[J]. Physical Review B, 2006, 73(10): 104509.

    [61] Nee T W. Anisotropic optical properties of YBa2Cu3O7[J]. Journal of Applied Physics, 1992, 71(12): 6002–6007.

    [62] Korzeb K, Gajc M, Pawlak D A. Compendium of natural hyperbolic materials[J]. Optics Express, 2015, 23(20): 25406– 25424.

    [63] Sun Jingbo, Litchinitser N M, Zhou Ji. Indefinite by nature: from ultraviolet to terahertz[J]. ACS Photonics, 2014, 1(4): 293–303.

    [64] Caldwell J D, Kretinin A V, Chen Yiguo, et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride[J]. Nature Communications, 2014, 5: 5221.

    [65] Dai S, Fei Z, Ma Q, et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride[J]. Science, 2014, 343(6175): 1125–1129.

    [66] Alekseyev L V, Podolskiy V A, Narimanov E E. Homogeneous hyperbolic systems for terahertz and far-infrared frequen-cies[J]. Advances in Optoelectronics, 2012, 2012: 267564.

    [67] Gupta A, Sakthivel T, Seal S. Recent development in 2D materials beyond graphene[J]. Progress in Materials Science, 2015, 73: 44–126.

    [68] Low T, Roldán R, Wang Han, et al. Plasmons and screening in monolayer and multilayer black phosphorus[J]. Physical Re-view Letters, 2014, 113(10): 106802.

    [69] Rodin A S, Carvalho A, Castro Neto A H. Strain-induced gap modification in black phosphorus[J]. Physical Review Letters, 2014, 112(17): 176801.

    [70] Low T, Rodin A S, Carvalho A, et al. Tunable optical properties of multilayer black phosphorus thin films[J]. Physical Review B, 2014, 90(7): 075434.

    [71] Liu Zizhuo, Aydin K. Localized surface plasmons in nanostructured monolayer black phosphorus[J]. Nano Letters, 2016, 16(6): 3457–3462.

    [72] Correas-Serrano D, Gomez-Diaz J S, Melcon A A, et al. Black phosphorus plasmonics: anisotropic elliptical propagation and nonlocality-induced canalization[J]. Journal of Optics, 2016, 18(10): 104006.

    [73] Gomez-Diaz J S, Alù A. In Magnetically-biased graphene- based hyperbolic metasurfaces[C]. Proceedings of 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 2016: 359–360.

    [74] Liu Yongmin, Zhang Xiang. Metasurfaces for manipulating surface plasmons[J]. Applied Physics Letters, 2013, 103(14): 141101.

    [75] High A A, Devlin R C, Dibos A, et al. Visible-frequency hy-perbolic metasurface[J]. Nature, 2015, 522(7555): 192–196.

    [76] Andryieuski A, Lavrinenko A V, Chigrin D N. Graphene hy-perlens for terahertz radiation[J]. Physical Review B, 2012, 86(12): 121108.

    [77] Wang Wei, Xing Hui, Fang Liang, et al. Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial[J]. Optics Express, 2008, 16(25): 21142–21148.

    [78] Xiong Yi, Liu Zhaowei, Zhang Xiang. A simple design of flat hyperlens for lithography and imaging with half-pitch resolu-tion down to 20 nm[J]. Applied Physics Letters, 2009, 94(20): 203108.

    [79] Smolyaninov I I, Hung Y J, Davis C C. Magnifying superlens in the visible frequency range[J]. Science, 2007, 315(5819): 1699–1701.

    [80] Koppens F H L, Chang D E, García de Abajo F J. Graphene plasmonics: a platform for strong light–matter interactions[J]. Nano Letters, 2011, 11(8): 3370–3377.

    [81] Cortes C L, Newman W, Molesky S, et al. Quantum nano-photonics using hyperbolic metamaterials[J]. Journal of Optics, 2012, 14(6): 063001.

    [82] Novotny L, Hecht B. Principles of Nano-optics[M]. 2nd ed. Cambridge: Cambridge University Press, 2012.

    [83] Rousseau E, Siria A, Jourdan G, et al. Radiative heat transfer at the nanoscale[J]. Nature Photonics, 2009, 3(9): 514–517.

    [84] Shen Sheng, Narayanaswamy A, Chen Gang. Surface phonon polaritons mediated energy transfer between na-noscale gaps[J]. Nano Letters, 2009, 9(8): 2909–2913.

    [85] Song Bai, Ganjeh Y, Sadat S, et al. Enhancement of near-field radiative heat transfer using polar dielectric thin films[J]. Nature Nanotechnology, 2015, 10(3): 253–258.

    [86] Liu X L, Zhang Z M. Giant enhancement of nanoscale thermal radiation based on hyperbolic graphene plasmons[J]. Applied Physics Letters, 2015, 107(14): 143114.

    [87] Halterman K, Elson J M. Near-perfect absorption in epsi-lon-near-zero structures with hyperbolic dispersion[J]. Optics Express, 2014, 22(6): 7337–7348.

    [88] Kapitanova P V, Ginzburg P, Rodríguez-Fortuo F J, et al. Photonic spin Hall effect in hyperbolic metamaterials for po-larization-controlled routing of subwavelength modes[J]. Nature Communications, 2014, 5: 3226.

    [89] Miller O D, Johnson S G, Rodriguez A W. Effectiveness of thin films in lieu of hyperbolic metamaterials in the near field[J]. Physical Review Letters, 2014, 112(15): 157402.

    [90] Liu Xianglei, Zhang R Z, Zhang Zhuomin. Near-perfect photon tunneling by hybridizing graphene plasmons and hyperbolic modes[J]. ACS Photonics, 2014, 1(9): 785–789.

    [91] Correas-Serrano D, Gomez-Diaz J S, Tymchenko M, et al. Nonlocal response of hyperbolic metasurfaces[J]. Optics Express, 2015, 23(23): 29434–29448.

    [92] Yan Wei, Wubs M, Mortensen N A. Hyperbolic metamaterials: nonlocal response regularizes broadband supersingularity[J]. Physical Review B, 2012, 86(20): 205429.

    [in Chinese], [in Chinese], [in Chinese]. Research advances of hyperbolic metamaterials and metasurfaces[J]. Opto-Electronic Engineering, 2017, 44(3): 276
    Download Citation