• Laser & Optoelectronics Progress
  • Vol. 55, Issue 11, 113003 (2018)
Kunpeng Zhou1, Xufang Bai1, and Weihong Bi2、*
Author Affiliations
  • 1 College of Physics and Electronic Information, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 0 28000, China
  • 2 Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, School of Information Science and Engineering, Yanshan University, Qinhuangdao, Hebei 0 66004, China
  • show less
    DOI: 10.3788/LOP55.113003 Cite this Article Set citation alerts
    Kunpeng Zhou, Xufang Bai, Weihong Bi. Detection of Chemical Oxygen Demand in Water Based on Multi-Spectral Fusion of Ultraviolet and Fluorescence[J]. Laser & Optoelectronics Progress, 2018, 55(11): 113003 Copy Citation Text show less
    References

    [1] Gutiérrez-Capitán M, Baldi A, Gómez R et al. Electrochemical nanocomposite-derived sensor for the analysis of chemical oxygen demand in urban wastewaters[J]. Analytical Chemistry, 87, 2152-2160(2015). http://europepmc.org/abstract/med/25594378

    [2] Shen B J, Zhao Y Y, Xu Y et al. Determination of low chemical oxygen demand of waste water with high chloride by fast digestion-spectrophotometric method[J]. Chemical Analysis and Meterage, 25, 69-72(2016).

    [3] Gimeno O. García-Araya J F, Beltrán F J, et al. Removal of emerging contaminants from a primary effluent of municipal wastewater by means of sequential biological degradation-solar photocatalytic oxidation processes[J]. Chemical Engineering Journal, 290, 12-20(2016).

    [4] Jin B H, He Y, Shen J C et al. Measurement of chemical oxygen demand (COD) in natural water samples by flow injection ozonation chemiluminescence (FI-CL) technique[J]. Journal of Environmental Monitoring, 6, 673-678(2004). http://europepmc.org/abstract/MED/15292949

    [5] Hou D B, Zhang J, Chen L et al. Water quality analysis by UV-vis spectroscopy: a review of methodology and application[J]. Spectroscopy and Spectral Analysis, 33, 1839-1844(2013).

    [6] Zhu Y N, Yang P, Yang X Y et al. Classification of fresh meat species using laser-induced breakdown spectroscopy with support vector machine and principal component analysis[J]. Chinese Journal of Analytical Chemistry, 45, 336-341(2017).

    [7] Yuan J Z, Lu Q P, Wu C Y et al. Noninvasive human triglyceride detecting with near-infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 38, 42-48(2018).

    [8] Kumar A, Jain S K. Development and validation of UV-spectroscopy based stability indicating method for the determination of fluoxetine hydrochloride[J]. Analytical Chemistry Letters, 6, 894-902(2016). http://www.tandfonline.com/doi/abs/10.1080/22297928.2016.1278180

    [9] Liu R X, Chen L L, Zhang H Y et al. A label-free single photonic quantum well biosensor based on porous silicon for DNA detection[J]. Optoelectronics Letters, 9, 225-228(2013). http://www.opticsjournal.net/Articles/Abstract?aid=OJ171012000219cJfLiO

    [10] Dong M, Sui Y, Li G L et al. Mid-infrared carbon monoxide detection system using differential absorption spectroscopy technique[J]. Optoelectronics Letters, 11, 469-472(2015). http://www.opticsjournal.net/Articles/Abstract?aid=OJ171012000518cIfLiO

    [11] Wu D C, Wei B, Tang G et al. Turbidity disturbance compensation for UV-VIS spectrum of waterbody based on Mie scattering[J]. Acta Optica Sinica, 37, 0230007(2017).

    [12] Dahlbacka J, Nyström J, Mossing T et al. On-line measurement of the chemical oxygen demand in wastewater in a pulp and paper mill using near infrared spectroscopy[J]. Spectral Analysis Review, 2, 19-25(2014).

    [13] Chen M F, Wu J, Lü Y L et al. Fluorescence properties of municipal wastewater[J]. Acta Optica Sinica, 28, 578-582(2008).

    [14] Wang J, Zhang F, Wang X P et al. Three-dimensional fluorescence characteristics by parallel factor method coupled with self-organizing map and its relationship with water quality[J]. Acta Optica Sinica, 37, 0730003(2017).

    [15] Qian C, Wang L F, Chen W et al. Fluorescence approach for the determination of fluorescent dissolved organic matter[J]. Analytical Chemistry, 89, 4264-4271(2017). http://www.ncbi.nlm.nih.gov/pubmed/28252936

    [16] Yang L Y, Hur J, Zhuang W N. Occurrence and behaviors of fluorescence EEM-PARAFAC components in drinking water and wastewater treatment systems and their applications: a review[J]. Environmental Science and Pollution Research, 22, 6500-6510(2015). http://www.ncbi.nlm.nih.gov/pubmed/25854204

    [17] Wu G Q, Bi W H. Research on chemical oxygen demand optical detection method based on the combination of multi-source spectral characteristics[J]. Spectroscopy and Spectral Analysis, 34, 3071-3074(2014).

    [18] Cao H. Research on rapid determination of organic matter concentration in aquaculture water using multi-source spectral data fusion[D]. Hangzhou: Zhejiang University, 58-68(2014).

    [19] Zepp R G, Sheldon W M, Moran M A. Dissolved organic fluorophores in southeastern US coastal waters: correction method for eliminating Rayleigh and Raman scattering peaks inexcitation-emission matrices[J]. Marine Chemistry, 89, 15-36(2004). http://www.sciencedirect.com/science/article/pii/S0304420304000799

    Kunpeng Zhou, Xufang Bai, Weihong Bi. Detection of Chemical Oxygen Demand in Water Based on Multi-Spectral Fusion of Ultraviolet and Fluorescence[J]. Laser & Optoelectronics Progress, 2018, 55(11): 113003
    Download Citation