• Laser & Optoelectronics Progress
  • Vol. 59, Issue 19, 1900005 (2022)
Jinyi Li1、*, Hang Zhao1, Xiaotao Yang2、**, and Shuo Zhao3
Author Affiliations
  • 1Tianjin Key Laboratory of Intelligent Control of Electrical Equipment, School of Control Science and Engineering, Tiangong University, Tianjin 300387, China
  • 2College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang China
  • 3Eastern Crude Oil Storage and Transportation Co., Ltd., National Petroleum and Natural Gas Pipe Network Group, Xuzhou 221008, Jiangsu, China
  • show less
    DOI: 10.3788/LOP202259.1900005 Cite this Article Set citation alerts
    Jinyi Li, Hang Zhao, Xiaotao Yang, Shuo Zhao. Research and Application Progress on Laser Absorption Spectroscopy Technology for 2D and 3D Imaging Measurement[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1900005 Copy Citation Text show less
    References

    [1] Kan R F, Liu W Q, Zhang Y J et al. A high sensitivity spectrometer with tunable diode laser for ambient methane monitoring[J]. Chinese Optics Letters, 5, 54-57(2007).

    [2] Zhang W, Wu Z Y, Yu Q X. Photoacoustic spectroscopy for fast and sensitive ammonia detection[J]. Chinese Optics Letters, 5, 677-679(2007).

    [3] Wang Y, Wei Y B, Liu T Y et al. TDLAS detection of propane/butane gas mixture by using reference gas absorption cells and partial least square approach[J]. IEEE Sensors Journal, 18, 8587-8596(2018).

    [4] Xin M Y, Song J L, Rao W et al. An efficient regulation approach for tomographic reconstruction in combustion diagnostics based on TDLAS method[J]. Chinese Journal of Aeronautics, 33, 3158-3166(2020).

    [5] Li J Y, Sun F S, Zhang C G et al. Application and prospect of tunable laser absorption spectroscopy in coal-fired power plants[J]. Laser Journal, 41, 8-17(2020).

    [6] Wang H Q, Lin W, Tong Y H et al. Review of laser-based temperature diagnosis methods for combustion field[J]. Physics of Gases, 5, 42-55(2020).

    [7] Lee J G, Kim K, Santavicca D A. Measurement of equivalence ratio fluctuation and its effect on heat release during unstable combustion[J]. Proceedings of the Combustion Institute, 28, 415-421(2000).

    [8] Hardalupas Y, Orain M. Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame[J]. Combustion and Flame, 139, 188-207(2004).

    [9] Stojkovic B D, Fansler T D, Drake M C et al. High-speed imaging of OH* and soot temperature and concentration in a stratified-charge direct-injection gasoline engine[J]. Proceedings of the Combustion Institute, 30, 2657-2665(2005).

    [10] Jiang L Q, Gu C, Zhou G Z et al. Cellular instabilities of n-butane/air flat flames probing by PLIF-OH and PLIF-CH2O laser diagnosis[J]. Experimental Thermal and Fluid Science, 118, 110155(2020).

    [11] Qi H L, Sun R, Peng J B et al. Experimental investigation on the ignition and combustion characteristics of pyrolyzed char and bituminous coal blends[J]. Fuel, 281, 118732(2020).

    [12] Mathews G C, Goldenstein C S. Wavelength-modulated planar laser-induced fluorescence for imaging gases[J]. Optics Letters, 42, 5278-5281(2017).

    [13] Pu J P, Sutton J A. Quantitative 2D thermometry in turbulent sooting non-premixed flames using filtered Rayleigh scattering[J]. Applied Optics, 60, 5742-5751(2021).

    [14] Zhao F Q, Hiroyasu H. The applications of laser Rayleigh scattering to combustion diagnostics[J]. Progress in Energy and Combustion Science, 19, 447-485(1993).

    [15] Wehrmeyer J A, Cheng T S, Pitz R W. Raman scattering measurements in flames using a tunable KrF excimer laser[J]. Applied Optics, 31, 1495-1504(1992).

    [16] Roy S, Gord J R, Patnaik A K. Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows[J]. Progress in Energy and Combustion Science, 36, 280-306(2010).

    [17] Fuest F, Barlow R S, Chen J Y et al. Raman/Rayleigh scattering and CO-LIF measurements in laminar and turbulent jet flames of dimethyl ether[J]. Combustion and Flame, 159, 2533-2562(2012).

    [18] Li J Y, Yu Z W, Du Z H et al. Standoff chemical detection using laser absorption spectroscopy: a review[J]. Remote Sensing, 12, 2771(2020).

    [19] Hong Y J, Song J L, Rao W et al. Progress on tunable diode laser absorption tomography technique for combustion diagnostics[J]. Journal of Experiments in Fluid Mechanics, 32, 43-54(2018).

    [20] Cheong K P, Ma L H, Wang Z et al. Influence of line pair selection on flame tomography using infrared absorption spectroscopy[J]. Applied Spectroscopy, 73, 529-539(2019).

    [21] Hanson R K, Kuntz P A, Kruger C H. High-resolution spectroscopy of combustion gases using a tunable IR diode laser[J]. Applied Optics, 16, 2045-2048(1977).

    [22] Hanson R K. Shock tube spectroscopy: advanced instrumentation with a tunable diode laser[J]. Applied Optics, 16, 1479-1481(1977).

    [23] Stacewicz T, Bielecki Z, Wojtas J et al. Detection of disease markers in human breath with laser absorption spectroscopy[J]. Opto-Electronics Review, 24, 82-94(2016).

    [24] Jatana G, Geckler S, Koeberlein D et al. Design and development of a probe-based multiplexed multi-species absorption spectroscopy sensor for characterizing transient gas-parameter distributions in the intake systems of I.C. engines[J]. Sensors and Actuators B: Chemical, 240, 1197-1204(2017).

    [25] Swinehart D F. The beer-lambert law[J]. Journal of Chemical Education, 39, 333(1962).

    [26] Hanson R K, Spearrin R M, Goldenstein C S[M]. Spectroscopy and optical diagnostics for gases(2016).

    [27] Wolfgang D[J]. Laser spectroscopy(2014).

    [28] Liu C, Xu L J. Laser absorption spectroscopy for combustion diagnosis in reactive flows: a review[J]. Applied Spectroscopy Reviews, 54, 1-44(2019).

    [29] Li J S, Yu B L, Zhao W X et al. A review of signal enhancement and noise reduction techniques for tunable diode laser absorption spectroscopy[J]. Applied Spectroscopy Reviews, 49, 666-691(2014).

    [30] Li H J, Rieker G B, Liu X et al. Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases[J]. Applied Optics, 45, 1052-1061(2006).

    [31] Pan X C, Sidky E Y, Vannier M. Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?[J]. Inverse Problems, 25, 1230009(2009).

    [32] Wondraczek L, Khorsandi A, Willer U et al. Mid-infrared laser-tomographic imaging of carbon monoxide in laminar flames by difference frequency generation[J]. Combustion and Flame, 138, 30-39(2004).

    [33] Schleicher E, da Silva M J, Thiele S et al. Design of an optical tomograph for the investigation of single- and two-phase pipe flows[J]. Measurement Science and Technology, 19, 094006(2008).

    [34] Xia H H, Liu J G, Xu Z Y et al. Reconstruction research for gas concentration and temperature of flame based on algebraic reconstruction technique[J]. Spectroscopy and Spectral Analysis, 35, 2697-2702(2015).

    [35] Wang F, Wu Q, Huang Q X et al. Simultaneous measurement of 2-dimensional H2O concentration and temperature distribution in premixed methane/air flame using TDLAS-based tomography technology[J]. Optics Communications, 346, 53-63(2015).

    [36] Yin K W, Xu D, Zhang L et al. 2D reconstruction for gas temperature and concentration based on TDLAS[J]. Opto-Electronic Engineering, 43, 20-27(2016).

    [37] Jeon M G, Doh Y, Kamimoto T et al. Performances of new reconstruction algorithms for CT-TDLAS[J]. Applied Thermal Engineering, 15, 1148-1160(2016).

    [38] Jeon M G, Doh D H, Deguchi Y. Measurement enhancement on two-dimensional temperature distribution of methane-air premixed flame using SMART algorithm in CT-TDLAS[J]. Applied Sciences, 9, 4955(2019).

    [39] Jeon M G, Hong J W, Doh D H et al. A study on two-dimensional temperature and concentration distribution of Propane-Air premixed flame using CT-TDLAS[J]. Modern Physics Letters B, 34, 2040020(2020).

    [40] Jeon M G, Doh D H, Deguchi Y et al. Evaluation of 3D measurement using CT-TDLAS[J]. Modern Physics Letters B, 33, 1940018(2019).

    [41] Xia H H, Kan R F, Xu Z Y et al. Two-step tomographic reconstructions of temperature and species concentration in a flame based on laser absorption measurements with a rotation platform[J]. Optics and Lasers in Engineering, 90, 10-18(2017).

    [42] Bao Y, Zhang R, Enemali G et al. Relative entropy regularized TDLAS tomography for robust temperature imaging[J]. IEEE Transactions on Instrumentation and Measurement, 70, 4501909(2021).

    [43] Yu T, Cai W W, Liu Y Z. Rapid tomographic reconstruction based on machine learning for time-resolved combustion diagnostics[J]. The Review of Scientific Instruments, 89, 043101(2018).

    [44] Si J J, Fu G C, Cheng Y B et al. Tunable diode laser absorption tomography based on hierarchical discretization and residual network[J]. Journal of Electronics & Information Technology, 43, 1-8(2021).

    [45] Wright P, Terzija N, Davidson J L et al. High-speed chemical species tomography in a multi-cylinder automotive engine[J]. Chemical Engineering Journal, 158, 2-10(2010).

    [46] Wright P, Garcia-Stewart C A, Carey S J et al. Toward in-cylinder absorption tomography in a production engine[J]. Applied Optics, 44, 6578-6592(2005).

    [47] Terzija N, Davidson J L, Garcia-Stewart C A et al. Image optimization for chemical species tomography with an irregular and sparse beam array[J]. Measurement Science and Technology, 19, 094007(2008).

    [48] Twynstra M G, Daun K J. Laser-absorption tomography beam arrangement optimization using resolution matrices[J]. Applied Optics, 51, 7059-7068(2012).

    [49] Liu C, Tsekenis S A, Polydorides N et al. Toward customized spatial resolution in TDLAS tomography[J]. IEEE Sensors Journal, 19, 1748-1755(2019).

    [50] Song J L, Hong Y J, Wang G Y et al. Two-dimensional reconstructions of gas temperature and concentration in combustion based on tunable diode laser absorption spectroscopy[J]. Acta Physica Sinica, 61, 240702(2012).

    [51] Liu C, Xu L, Chen J et al. Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration[J]. Optics Express, 23, 22494-22511(2015).

    [52] Zhou G X, Zhang X, Li J P et al. Optical diagnostics in a detonation-driven direct-connected circular combustor fueled with hydrogen for Mach 10 scramjet[J]. International Journal of Hydrogen Energy, 46, 27801-27815(2021).

    [53] Zhang H Y, Cao Z, Zhao W S et al. A compact laser absorption spectroscopy tomographic system with short spectral scanning time and adjustable frame rate[J]. IEEE Transactions on Instrumentation and Measurement, 69, 8226-8237(2020).

    [54] Xia H H, Xu Z Y, Kan R F et al. Numerical study of two-dimensional water vapor concentration and temperature distribution of combustion zones using tunable diode laser absorption tomography[J]. Infrared Physics & Technology, 72, 170-178(2015).

    [55] Ma L, Cai W W, Caswell A W et al. Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy[J]. Optics Express, 17, 8602-8613(2009).

    [56] Cai W W, Ewing D J, Ma L. Application of simulated annealing for multispectral tomography[J]. Computer Physics Communications, 179, 250-255(2008).

    [57] Cai W W, Ma L. Applications of critical temperature in minimizing functions of continuous variables with simulated annealing algorithm[J]. Computer Physics Communications, 181, 11-16(2010).

    [58] Corana A, Marchesi M, Martini C et al. Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithm: corrigenda for this article is available here[J]. ACM Transactions on Mathematical Software, 13, 262-280(1987).

    [59] Zang Y P, Xu Z Y, Xia H H et al. Method for measuring high temperature spectral line parameters based on calibration-free wavelength modulation technology[J]. Chinese Journal of Lasers, 47, 1011001(2020).

    [60] Wang X P, Peng D, Li J S et al. Two-dimensional reconstruction of combustion flow field using wavelength-modulated absorption spectra[J]. Chinese Journal of Lasers, 48, 0711002(2021).

    [61] Cai W W, Kaminski C F. Multiplexed absorption tomography with calibration-free wavelength modulation spectroscopy[J]. Applied Physics Letters, 104, 154106(2014).

    [62] Qu Q W, Cao Z, Xu L J et al. Optimal selection of spectral lines for multispectral absorption tomography[J]. Applied Physics B, 124, 1-9(2018).

    [63] Shi J W, Qi H, Zhang J Y et al. Simultaneous measurement of flame temperature and species concentration distribution from nonlinear tomographic absorption spectroscopy[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 241, 106693(2020).

    [64] Yu T, Tian B, Cai W W. Development of a beam optimization method for absorption-based tomography[J]. Optics Express, 25, 5982-5999(2017).

    [65] Ma L, Li X S, Sanders S T et al. 50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography[J]. Optics Express, 21, 1152-1162(2013).

    [66] Blume N G, Ebert V, Dreizler A et al. Broadband fitting approach for the application of supercontinuum broadband laser absorption spectroscopy to combustion environments[J]. Measurement Science and Technology, 27, 015501(2016).

    [67] Wang X P, Peng D, Li J S et al. Two-dimensional reconstruction of combustion flow field using wavelength-modulated absorption spectra[J]. Chinese Journal of Lasers, 48, 0711002(2021).

    [68] Liu X C, Zhang G Y, Huang Y et al. Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 μm[J]. Applied Physics B, 124, 1-10(2018).

    [69] Nau P, Koppmann J, Lackner A et al. Quantum cascade laser-based MIR spectrometer for the determination of CO and CO2 concentrations and temperature in flames[J]. Applied Physics B, 118, 361-368(2015).

    [70] Liu J R, Hu Z Y. Applications of measurement techniques based on lasers in combustion flow field diagnostics[J]. Chinese Optics, 11, 531-549(2018).

    [71] Kan R F, Xia H H, Xu Z Y et al. Research and progress of flow field diagnosis based on laser absorption spectroscopy[J]. Chinese Journal of Lasers, 45, 0911005(2018).

    [72] Cai W W, Kaminski C F. Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows[J]. Progress in Energy and Combustion Science, 59, 1-31(2017).

    [73] Wei C Y, Pineda D I, Goldenstein C S et al. Tomographic laser absorption imaging of combustion species and temperature in the mid-wave infrared[J]. Optics Express, 26, 20944-20951(2018).

    [74] Zhao Z G, Feng J W. The infilence of light source coherence in the diffraction field[J]. Journal of Yanan University (Natural Science Edition), 20, 41-42(2001).

    [75] Mu D D, Zhu Y T, Zhang K. Modulation of annular light distribution by mechanical fiber scrambler[J]. Journal of Applied Optics, 33, 996-1001(2012).

    [76] Tancin R J, Spearrin R M, Goldenstein C S. 2D mid-infrared laser-absorption imaging for tomographic reconstruction of temperature and carbon monoxide in laminar flames[J]. Optics Express, 27, 14184-14198(2019).

    [77] Strahl T, Herbst J, Lambrecht A et al. Methane leak detection by tunable laser spectroscopy and mid-infrared imaging[J]. Applied Optics, 60, C68-C75(2021).

    [78] Wei C Y, Schwarm K K, Pineda D I et al. Volumetric laser absorption imaging of temperature, CO and CO2 in laminar flames using 3D masked Tikhonov regularization[J]. Combustion and Flame, 224, 239-247(2021).

    [79] Wei C Y, Schwarm K K, Pineda D I et al. Deep neural network inversion for 3D laser absorption imaging of methane in reacting flows[J]. Optics Letters, 45, 2447-2450(2020).

    [80] Wei C Y, Schwarm K K, Pineda D I et al. Physics-trained neural network for sparse-view volumetric laser absorption imaging of species and temperature in reacting flows[J]. Optics Express, 29, 22553-22566(2021).

    [81] Goldenstein C S, Spearrin R M, Jeffries J B et al. Infrared laser-absorption sensing for combustion gases[J]. Progress in Energy and Combustion Science, 60, 132-176(2017).

    Jinyi Li, Hang Zhao, Xiaotao Yang, Shuo Zhao. Research and Application Progress on Laser Absorption Spectroscopy Technology for 2D and 3D Imaging Measurement[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1900005
    Download Citation