• Chinese Journal of Quantum Electronics
  • Vol. 40, Issue 6, 899 (2023)
LI Haidong1,2,3, SHEN Yu1,2,*, WEN Ya4, ZHANG Shenjin1,2,**..., ZONG Nan1,2, BO Yong1,2 and PENG Qinjun1,2|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • 2Key Laboratory of Solid State Laser, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • 4Institute of Optical Physics and Engineering Technology, Qilu Zhongke, Jinan 250000, China
  • show less
    DOI: 10.3969/j.issn.1007-5461.2023.06.010 Cite this Article
    Haidong LI, Yu SHEN, Ya WEN, Shenjin ZHANG, Nan ZONG, Yong BO, Qinjun PENG. Band calculation and spectral analysis of diamond crystal[J]. Chinese Journal of Quantum Electronics, 2023, 40(6): 899 Copy Citation Text show less
    References

    [1] Williams R J, Nold J, Strecker M et al. Efficient Raman frequency conversion of high-power fiber lasers in diamond[J]. Laser & Photonics Reviews, 9, 405-411(2015).

    [2] Pashinin V P, Ralchenko V G, Bolshakov A P et al. External-cavity diamond Raman laser performance at 1240 nm and 1485 nm wavelengths with high pulse energy[J]. Laser Physics Letters, 13, 065001(2016).

    [3] Friel I, Geoghegan S L, Twitchen D J et al. Development of high quality single crystal diamond for novel laser applications[C], 7838, 340-347(2010).

    [4] Balmer R S, Brandon J R, Clewes S L et al. Chemical vapour deposition synthetic diamond: Materials, technology and applications[J]. Journal of Physics: Condensed Matter, 21, 364221(2009).

    [5] Savitski V G, Reilly S, Kemp A J. Steady-state Raman gain in diamond as a function of pump wavelength[J]. IEEE Journal of Quantum Electronics, 49, 218-223(2013).

    [6] Sabella A, Piper J A, Mildren R P. 1240 nm diamond Raman laser operating near the quantum limit[J]. Optics Letters, 35, 3874-3876(2010).

    [7] Yang X Z, Feng Y. Diamond Raman lasers for sodium guide star[J]. Chinese Journal of Quantum Electronics, 37, 447-455(2020).

    [8] Černý P, Zverev P G, Jelínková H et al. Efficient Raman shifting of picosecond pulses using BaWO4 crystal[J]. Optics Communications, 177, 397-404(2000).

    [9] Findeisen J, Eichler H J, Peuser P et al. Diode-pumped Ba(NO3)2 and NaBrO3 Raman lasers[J]. Applied Physics B, 70, 159-162(2000).

    [10] Lin H Y, Huang X H, Sun D et al. Passively Q-switched multi-wavelength Nd: YVO4 self-Raman laser[J]. Journal of Modern Optics, 63, 2235-2237(2016).

    [11] Kaminskii A A, Ueda K I, Eichler H J et al. Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers[J]. Optics Communications, 194, 201-206(2001).

    [12] Mochalov I V. Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2: Nd3+-(KGW: Nd)[J]. Optical Engineering, 36, 1660-1669(1997).

    [13] Basiev T T, Sobol A A, Zverev P G et al. Raman spectroscopy of crystals for stimulated Raman scattering[J]. Optical Materials, 11, 307-314(1999).

    [14] Martineau P M, Gaukroger M P, Guy K B et al. High crystalline quality single crystal chemical vapour deposition diamond[J]. Journal of Physics: Condensed Matter, 21, 364205(2009).

    [15] Sabella A, Piper J A, Mildren R P. Diamond Raman laser with continuously tunable output from 3.38 to 3.80 μm[J]. Optics Letters, 39, 4037-4040(2014).

    [16] Demetriou G, Kemp A J, Savitski V. 100 kW peak power external cavity diamond Raman laser at 2.52 μm[J]. Optics Express, 27, 10296-10303(2019).

    [17] Williams R J, Spence D J, Lux O et al. High-power continuous-wave Raman frequency conversion from 1.06 µm to 1.49 µm in diamond[J]. Optics Express, 25, 749-757(2017).

    [18] Heinzig M, Walbaum T, Williams R J et al. High-power single-pass pumped diamond Raman laser[C](2017).

    [19] Antipov S, Sabella A, Williams R J et al. 1.2 kW quasi-steady-state diamond Raman laser pumped by an M2 = 15 beam[J]. Optics Letters, 44, 2506-2509(2019).

    [20] Shao Z H, Li X X, Shen Y J et al. Wavelength-tunable diamond Raman laser at ∼2.5 μm[J]. Laser Physics Letters, 18, 075001(2021).

    [21] Dean P J, Lightowlers E C, Wight D R. Intrinsic and extrinsic recombination radiation from natural and synthetic aluminum-doped diamond[J]. Physical Review, 140, A352-A368(1965).

    [22] Mehl M J, Pickett W E. Zone-center Raman active modes in cubic and hexagonal diamond[C](1989).

    [23] Klein C A, Hartnett T M, Robinson C J. Critical-point phonon frequencies of diamond[J]. Physical Review B, 45, 12854-12863(1992).

    [24] Vogelgesang R, Alvarenga A D, Kim H et al. Multiphonon Raman and infrared spectra of isotopically controlled diamond[J]. Physical Review B, 58, 5408-5416(1998).

    [25] Wu B R, Xu J A. Total energy calculations of the lattice properties of cubic and hexagonal diamond[J]. Physical Review B, 57, 13355-13358(1998).

    [26] Wu B R. Structural and vibrational properties of the 6H diamond: First-principles study[J]. Diamond and Related Materials, 16, 21-28(2007).

    [27] Fu Z J, Ji G F, Chen X R et al. First-principle calculations for elastic and thermodynamic properties of diamond[J]. Communications in Theoretical Physics, 51, 1129-1134(2009).

    [28] Huang E P. High-temperature and pressure Raman spectroscopy of diamond[J]. Materials Letters, 64, 580-582(2010).

    [29] Yue S Y, Qin G Z, Zhang X L et al. Thermal transport in novel carbon allotropes with sp2 or sp3 hybridization: An ab initio study[J]. Physical Review B, 95, 085207(2017).

    [30] Zhou J H, Li D H. The phonon transport properties in cubic graphene with entirely sp2 hybridization state[J]. Physics Letters A, 404, 127410(2021).

    [31] Kittel C[M]. Introduction to Solid State Physics(2005).

    [32] Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Physical Review, 136, B864-B871(1964).

    [33] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 140, A1133-A1138(1965).

    [34] Wang L L, Wan Q, Hu W J et al. The local states density and band structure of diamond and graphite studied by first principles molecular dynamics[J]. Computers and Applied Chemistry, 27, 735-738(2010).

    [35] Straumanis M E, Aka E Z. Precision determination of lattice parameter, coefficient of thermal expansion and atomic weight of carbon in Diamond1[J]. Journal of the American Chemical Society, 73, 5643-5646(1951).

    [36] Spehar J. Diamonds (atomic structure and properties)[J]. IEEE Potentials, 10, 9-12(1991).

    [37] Sheng X L, Yan Q B, Ye F et al. T-carbon: A novel carbon allotrope[J]. Physical Review Letters, 106, 155703(2011).

    [38] Huang K, Han R Q[M]. Solid State Physics(1988).

    [39] Bai Z X, Yang X Z, Chen H et al. Research progress of high-power diamond laser technology[J]. Infrared and Laser Engineering, 49, 1-13(2020).

    [40] Qin S[M]. Fundamentals of Crystallography, 22-24(2004).

    [41] Gao S P. Band gaps and dielectric functions of cubic and hexagonal diamond polytypes calculated by many-body perturbation theory[J]. Physica Status Solidi (b), 252, 235-242(2015).

    [42] Barnard A S, Russo S P, Snook I K. Comparative Hartree-Fock and density-functional theory study of cubic and hexagonal diamond[J]. Philosophical Magazine B, 82, 1767-1776(2002).

    [43] Philipp H R, Taft E A. Optical properties of diamond in the vacuum ultraviolet[J]. Physical Review, 127, 159-161(1962).

    [44] Phillip H R, Taft E A. Kramers-Kronig analysis of reflectance data for diamond[J]. Physical Review, 136, A1445-A1448(1964).

    [45] Zhao L, Xie Y Z, Chen R H et al. Analysis on defect formation energy and band structure of C, N Co-doped anatase TiO2[J]. Journal of Synthetic Crystals, 47, 2663-2668(2018).

    [46] Samantaray C B, Sim H, Hwang H. The electronic structures and optical properties of BaTiO3 and SrTiO3 using first-principles calculations[J]. Microelectronics Journal, 36, 725-728(2005).

    [47] Cai M Q, Yin Z, Zhang M S. First-principles study of optical properties of Barium titanate[J]. Applied Physics Letters, 83, 2805-2807(2003).

    [48] Salehpour M R, Satpathy S. Comparison of electron bands of hexagonal and cubic diamond[J]. Physical Review B, 41, 3048-3052(1990).

    [49] Li X Z, Gómez-Abal R, Jiang H et al. Impact of widely used approximations to the G0W0method: An all-electron perspective[J]. New Journal of Physics, 14, 023006(2012).

    [50] Bohr N. LXXIII.On the constitution of atoms and molecules[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 26, 857-875(1913).

    [51] Huang Y Y[M]. Atomic Physics Tutorial, 117-122(2012).

    [53] Sharma G. Carbon allotropes: Metal-complex chemistry, properties and applications[J]. MRS Bulletin, 45, 678(2020).

    [54] Simmons J H, Potter K S[M]. Optical Materials, 106-110(2000).

    [55] Jones R, King T. Calculation of local density of states at defects in diamond and silicon[J]. Physica B+C, 116, 72-75(1983).

    [56] Ward A, Broido D A, Stewart D A et al. Ab initiotheory of the lattice thermal conductivity in diamond[J]. Physical Review B, 80, 125203(2009).

    [57] Sparavigna A. Influence of isotope scattering on the thermal conductivity of diamond[J]. Physical Review B, 65, 064305(2002).

    [58] Warren J L, Yarnell J L, Dolling G et al. Lattice dynamics of diamond[J]. Physical Review, 158, 805-808(1967).

    [59] Sham L J. Electronic contribution to lattice dynamics in insulating crystals[J]. Physical Review, 188, 1431-1439(1969).

    [60] Occelli F, Loubeyre P, LeToullec R. Properties of diamond under hydrostatic pressures up to 140 GPa[J]. Nature Materials, 2, 151-154(2003).

    [61] Ager J W, Veirs D K, Rosenblatt G M. Spatially resolved Raman studies of diamond films grown by chemical vapor deposition[J]. Physical Review B, 43, 6491-6499(1991).

    [62] Maezono R, Ma A, Towler M D et al. Equation of state and Raman frequency of diamond from quantum Monte Carlo simulations[J]. Physical Review Letters, 98, 025701(2007).

    [63] Lax M, Burstein E. Infrared lattice absorption in ionic and homopolar crystals[J]. Physical Review, 97, 39-52(1955).

    [64] Li Z, Pan W. Lattice dynamical properties and thermal transport properties of CeO2: A first-principle study[J]. Rare Metal Materials and Engineering, 49, 510-514(2020).

    [65] Savitski V G, Friel I, Hastie J E et al. Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers[J]. IEEE Journal of Quantum Electronics, 48, 328-337(2012).

    [66] Mildren R P. Intrinsic Optical Properties of Diamond[M]. Mildren R P, Rabeau J R. Optical Engineering of Diamond(2013).

    [67] Clark C D, Dean P J, Harris P V. Intrinsic edge absorption in diamond[J]. Proceedings of the Royal Society of London Series A(Mathematical and Physical Sciences), 277, 312-329(1964).

    [68] Zhang Z Z, Zhang C H, Yan W J et al. Influence of doping on photoelectric properties of new two-dimensional material phosphorene[J]. Chinese Journal of Quantum Electronics, 38, 108-115(2021).

    [69] Li Y Q, Bai Z X, Chen H et al. Eye-safe diamond Raman laser[J]. Results in Physics, 16, 102853(2020).

    [70] Birman J L. Theory of Crystal Space Groups and Infra-red and Raman Lattice Processes of Insulating Crystals[M]. Birman J L. Theory of Crystal Space Groups and Lattice Dynamics(1974).

    Haidong LI, Yu SHEN, Ya WEN, Shenjin ZHANG, Nan ZONG, Yong BO, Qinjun PENG. Band calculation and spectral analysis of diamond crystal[J]. Chinese Journal of Quantum Electronics, 2023, 40(6): 899
    Download Citation