• Journal of Inorganic Materials
  • Vol. 37, Issue 9, 969 (2022)
Wenjun LI, Hao WANG*, Bingtian TU, Qiangguo CHEN, Kaiping ZHENG, Weiming WANG, and Zhengyi FU
Author Affiliations
  • State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
  • show less
    DOI: 10.15541/jim20210771 Cite this Article
    Wenjun LI, Hao WANG, Bingtian TU, Qiangguo CHEN, Kaiping ZHENG, Weiming WANG, Zhengyi FU. Preparation and Property of Mg0.9Al2.08O3.97N0.03 Transparent Ceramic with Broad Optical Transmission Range [J]. Journal of Inorganic Materials, 2022, 37(9): 969 Copy Citation Text show less

    Abstract

    MgAl2O4 transparent ceramics possess excellent optical property, but their practical applications are somewhat restricted by the hydrolysis problem during the shaping process and limited mechanical property. Meanwhile, it has been demonstrated that the property of quaternary MgAlON spinel can be effectively adjusted via varying their composition. Accordingly, a novel Mg0.9Al2.08O3.97N0.03 transparent ceramic with a broad transmittance range was prepared by combining aqueous gel-casting, pressureless sintering, and hot isostatic pressing treatment. Optical and mechanical property of this transparent ceramic were systematically investigated and compared with those of MgAl2O4 transparent ceramic. Furthermore, the slow crack growth under low stress were analyzed, and the service life of transparent ceramic was predicted. It is shown that the viscosity of ceramic slurry with 50% (in volume) solid load was 124 mPa·s, which could meet the requirement of aqueous gel-casting. The in-line transmittance of 86.2% at 3.7 μm was obtained in the Mg0.9Al2.08O3.97N0.03 transparent ceramic sample with thickness of 2 mm, and the optical transmittance range was comparable to that of MgAl2O4, with slightly higher refractive index and Abbé number. Further, this ceramic showed a Weibull modulus similar to MgAl2O4, and although its crack slow growth coefficient is lower than MgAl2O4, but both the characteristic strength (210.6 MPa) and inert strength (227.5 MPa) were much higher. Therefore, in the quaternary MgAlON spinel with low nitrogen content, the hydrolysis problem of ceramic powders could be well overcome, while the mechanical property of transparent ceramic was remarkably improved without degradation of optical property. This research provides a new pathway toward obtaining the novel spinel transparent ceramics with improved preparation and property.
    Wenjun LI, Hao WANG, Bingtian TU, Qiangguo CHEN, Kaiping ZHENG, Weiming WANG, Zhengyi FU. Preparation and Property of Mg0.9Al2.08O3.97N0.03 Transparent Ceramic with Broad Optical Transmission Range [J]. Journal of Inorganic Materials, 2022, 37(9): 969
    Download Citation