• Microelectronics
  • Vol. 53, Issue 4, 685 (2023)
FAN Jiangtao, GAO Xingrui, FANG Yuming, and DENG Licheng
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.13911/j.cnki.1004-3365.220464 Cite this Article
    FAN Jiangtao, GAO Xingrui, FANG Yuming, DENG Licheng. Review of State of Art and Trend of Shoe Energy Harvester[J]. Microelectronics, 2023, 53(4): 685 Copy Citation Text show less
    References

    [1] SUN D, XU Y, CHEN H, et al. A mean flow acoustic engine capable of wind energy harvesting [J]. Energy Conversion and Management, 2012, 63: 101-105.

    [2] CAMPOSANO R, WILBERG J. Embedded system design [J]. Design Automation for Embedded Systems, 1996, 1(1): 5-50.

    [3] STARNER T. Human-powered wearable computing [J]. IBM Systems Journal, 1996, 35(3-4): 618-629.

    [4] ERTURK A, INMAN D J. Piezoelectric energy harvesting [M]. New York: John Wiley & Sons, 2011.

    [5] BEEBY S P, O’DONNELL T. Electromagnetic energy harvesting [J]. Energy Harvesting Technologies, 2008: 129-161.

    [6] NARITA F, FOX M. A review on piezoelectric, magnetostrictive, and magnetoelectric materials and device technologies for energy harvesting applications [J]. Advanced Engineering Materials, 2018, 20(5): 1700743.

    [7] EUN Y, KWON D S, KIM M O, et al. A flexible hybrid strain energy harvester using piezoelectric and electrostatic conversion [J]. Smart Material Structures, 2014, 23(4): 045040.

    [10] WHITTLE M W. Generation and attenuation of transient impulsive forces beneath the foot: a review [J]. Gait & Posture, 1999, 10(3): 264-275.

    [11] XU B, LI Y. Force analysis and energy harvesting for innovative multi-functional shoes [J]. Frontiers in Materials, 2019: 221.

    [12] KANG Y, WANG B, DAI S, et al. Folded elastic strip-based triboelectric nanogenerator for harvesting human motion energy for multiple applications [J]. ACS Applied Materials & Interfaces, 2015, 7(36): 20469-20476.

    [13] TAO K, CHEN Z, YI H, et al. Hierarchical honeycomb- structured electret/triboelectric nanogenerator for biomechanical and morphing wing energy harvesting [J]. Nano-Micro Letters, 2021, 13(1): 123.

    [14] XIE L, CAI M. An in-shoe harvester with motion magnification for scavenging energy from human foot strike [J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(6): 3264-3268.

    [15] LIU Y, FU W, LI W, et al. Design and analysis of a shoe-embeded power harvester based on magnetic gear [J]. IEEE Transactions on Magnetics, 2016, 52(7): 1-4.

    [16] ZHU D, DUARTE-RABELO I, AYALA-GARCIA I N, et al. An electromagnetic in-shoe energy harvester using wave springs [C] // 2018 IEEE Industrial Cyber-Physical Systems (ICPS). 2018: 659-663.

    [17] YIN Z, GAO S, JIN L, et al. A shoe-mounted frequency up-converted piezoelectric energy harvester [J]. Sensors and Actuators A: Physical, 2021, 318: 112530.

    [22] ZHAO J, YOU Z. A shoe-embedded piezoelectric energy harvester for wearable sensors [J]. Sensors, 2014, 14(7): 12497-12510.

    [23] QIAN F, XU T B, ZUO L. Design, optimization, modeling and testing of a piezoelectric footwear energy harvester [J]. Energy Conversion and Management, 2018, 171: 1352-1364.

    [24] QIAN F, XU T B, ZUO L. Piezoelectric energy harvesting from human walking using a two-stage amplification mechanism [J]. Energy, 2019, 189: 116140.

    [25] ASANO S, NISHIMURA S, IKEDA Y, et al. Energy harvester for safety shoes using parallel piezoelectric links [J]. Sensors and Actuators A: Physical, 2020, 309: 112000.

    [26] KURITA H, KATABIRA K, YOSHIDA Y, et al. Footstep energy harvesting with the magnetostrictive fiber integrated shoes [J]. Materials, 2019, 12(13): 2055.

    [27] CHA Y, SEO J. Energy harvesting from a piezoelectric slipper during walking [J]. Journal of Intelligent Material Systems and Structures, 2018, 29(7): 1456-1463.

    [28] WANG S, MIAO G, ZHOU S, et al. A novel electromagnetic energy harvester based on the bending of the sole [J]. Applied Energy, 2022, 314: 119000.

    [29] KYMISSIS J, KENDALL C, PARADISO J, et al. Parasitic power harvesting in shoes [C] // IEEE Second International Symposium on Wearable Computers, Digest of Papers. 1998: 132-139.

    [30] GAO S, GAIN A K, ZHANG L. A metamaterial for wearable piezoelectric energy harvester [J]. Smart Materials and Structures, 2020, 30(1): 015026.

    [31] LUO Z, ZHU D, SHI J, et al. Energy harvesting study on single and multilayer ferroelectret foams under compressive force [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(3): 1360-1368.

    [32] LUO Z, BEEBY S. Multilayer ferroelectret-based energy harvesting insole [C] // 15th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS). Boston, MA, USA. 2015.

    [33] YLLI K, HOFFMANN D, WILLMANN A, et al. Energy harvesting from human motion: exploiting swing and shock excitations [J]. Smart Material Structures, 2015, 24(2): 025029.

    [34] ORENDURFF M S, SEGAL A D, KLUTE G K, et al. The effect of walking speed on center of mass displacement [J]. Journal of Rehabilitation Research & Development, 2004, 41(6): 829-834.

    [35] MORO L, BENASCIUTTI D. Harvested power and sensitivity analysis of vibrating shoe-mounted piezoelectric cantilevers [J]. Smart Materials and Structures, 2010, 19(11): 115011.

    [36] LIU L, TANG W, DENG C, et al. Self-powered versatile shoes based on hybrid nanogenerators [J]. Nano Research, 2018, 11(8): 3972-3978.

    [37] WANG Z, WU X, ZHANG Y, et al. A new portable energy harvesting device mounted on shoes: performance and impact on wearer [J]. Energies, 2020, 13(15): 3871.

    [38] FAN K, LIU Z, LIU H, et al. Scavenging energy from human walking through a shoe-mounted piezoelectric harvester [J]. Applied Physics Letters, 2017, 110(14): 143902.

    FAN Jiangtao, GAO Xingrui, FANG Yuming, DENG Licheng. Review of State of Art and Trend of Shoe Energy Harvester[J]. Microelectronics, 2023, 53(4): 685
    Download Citation