• Journal of Infrared and Millimeter Waves
  • Vol. 37, Issue 6, 693 (2018)
XU Da-Peng, CHENG Pei-Hong, CHEN Lin*, and ZHANG David Wei
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2018.06.010 Cite this Article
    XU Da-Peng, CHENG Pei-Hong, CHEN Lin, ZHANG David Wei. Study on the electric field modulation effect of ultrathin alumina layer[J]. Journal of Infrared and Millimeter Waves, 2018, 37(6): 693 Copy Citation Text show less
    References

    [1] Szot K, Speier W, Bihlmayer G, et al. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 [J]. Nat. Mater. 2006, 5(4): 312-320.

    [2] Waser R, Aono M. Nanoionics-based resistive switching memories [J]. Nat. Mater. 2007, 6(11): 833-840.

    [3] Sawa A, Resistive switching in transition metal oxides [J]. Materials Today 2008, 11(6): 28-36.

    [4] Waser R, Dittmann R, Staikov G, et al. Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges [J]. Adv. Mater. 2009, 21(25-26): 2632-2663.

    [5] Chen L, Xu Y, Sun Q Q, et al. Highly uniform bipolar resistive switching with Al2O3 buffer layer in robust NbAlO-Based RRAM [J]. IEEE Electron Dev. Lett. 2010, 31(4): 356-358.

    [6] Yu S, Wu Y, Wong H S P. Investigating the switching dynamics and multilevel capability of bipolar metal oxide resistive switching memory [J]. Appl. Phys. Lett. 2011, 98(10):103514-103516.

    [7] Tsai T M, Chang K C, Chang T C, et al. Dehydroxyl effect of Sn-doped silicon oxide resistance random access memory with supercritical CO2 fluid treatment [J]. Appl. Phys. Lett. 2012, 101(11): 112906-112904.

    [8] Salaoru I, Prodromakis T, Khiat A, et al. Resistive switching of oxygen enhanced TiO2 thin-film devices [J]. Appl. Phys. Lett. 2013, 102(1):013506-013504.

    [9] Tian B B, Wang J L, Fusil S, et al. Tunnel electroresistance through organic ferroelectrics [J]. Nat. Commun. 2016, 7:11502.

    [10] Fujimoto M, Koyama H. TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching [J]. Appl. Phys. Lett. 2006, 89(22):223509-223511.

    [11] Kim K M, Choi B J, Hwang C S. Localized switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin films [J]. Appl. Phys. Lett. 2007, 90(24): 242906-242908.

    [12] Kim K M, Choi B J, Shin Y C, et al. Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films [J]. Appl. Phys. Lett. 2007, 91(1):012907-012909.

    [13] Gao B, Sun B, Zhang H, et al. Unified physical model of bipolar oxide-based resistive switching memory [J]. IEEE Electron Dev. Lett. 2009, 30(12):1326-1328.

    [14] Lee M H, Kim K M, Kim G H, et al. Study on the electrical conduction mechanism of bipolar resistive switching TiO2 thin films using impedance spectroscopy [J]. Appl. Phys. Lett. 2010, 96(15):2909-2911.

    [15] Zhang H, Gao B, Sun B, et al. Ionic doping effect in ZrO2 resistive switching memory [J]. Appl. Phys. Lett. 2010, 96(12):123502-123504.

    [16] Dong R, Xiang W F, Lee D S, et al. Improvement of reproducible hysteresis and resistive switching in metal-La0.7Ca0.3MnO3-metal heterostructures by oxygen annealing [J]. Appl. Phys. Lett. 2007, 90(18): 182118-182120.

    [17] Lin C Y, Lin M H, Wu M C, et al. Improvement of resistive switching characteristics in SrZrO3 thin films with embedded Cr layer [J]. IEEE Electron Dev. Lett. 2008, 29(10):1108-1111.

    [18] Yin M, Zhou P, Lv H B, et al. Improvement of resistive switching in CuxO using new RESET mode [J]. IEEE Electron Dev. Lett. 2008, 29(7): 681-683.

    [19] Lv H, Wang M, Wan H, et al. Endurance enhancement of Cu-oxide based resistive switching memory with Al top electrode [J]. Appl. Phys. Lett. 2009, 94(21):213502-213503.

    [20] Choi S J, Kim J H, Lee H H. Deep-UV curing of poly (4-vinyl phenol) gate dielectric for hysteresis-free organic thin-film transistors [J]. IEEE Electron Dev. Lett. 2009, 30(5):454-456.

    [21] Shang D S, Shi L, Sun J R, et al. Improvement of reproducible resistance switching in polycrystalline tungsten oxide films by in situ oxygen annealing [J]. Appl. Phys. Lett. 2010, 96(7):072103-072105.

    [22] Cagli C, Nardi F, Ielmini D. Modeling of set/reset operations in NiO-based resistive-switching memory devices [J]. IEEE T Electron Dev. 2009, 56(8):1712-1720.

    [23] Guan X, Yu S, Philip Wong H S. On the switching parameter variation of metal-oxide RRAM -Part I: Physical modeling and simulation methodology [J]. IEEE T Electron Dev. 2012, 59(4):1172-1182.

    [24] Chae S C, Lee J S, Kim S, et al. Random circuit breaker network model for unipolar resistance switching [J]. Adv. Mater. 2008, 20(6):1154-1159.

    [25] Chang S H, Lee J S, Chae S C, et al. Occurrence of both unipolar memory and threshold resistance switching in a NiO film [J]. Phys. Rev. Lett. 2009, 102(2):026801.

    [26] Lee S B, Yoo H K, Kim K, et al. Forming mechanism of the bipolar resistance switching in double-layer memristive nanodevices [J]. Nanotechnology 2012, 23(31):315202.

    [27] Russo U, Ielmini D, Cagli C, et al. Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices [J]. IEEE T Electron Dev. 2009, 56(2):186-192.

    [28] Russo U, Ielmini D, Cagli C, et al. Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices [J]. IEEE T Electron Dev. 2009, 56(2): 193-200.

    [29] Lee K, Jang J S, Kwon Y, et al. A unified model for unipolar resistive random access memory [J]. Appl. Phys. Lett. 2012, 100(8): 083509-083511.

    [30] Li D, Li M, Zahid F, et al. Oxygen vacancy filament formation in TiO2: A kinetic Monte Carlo study[J]. J. Appl. Phys. 2012, 112(7):073512-073517.

    XU Da-Peng, CHENG Pei-Hong, CHEN Lin, ZHANG David Wei. Study on the electric field modulation effect of ultrathin alumina layer[J]. Journal of Infrared and Millimeter Waves, 2018, 37(6): 693
    Download Citation