• Photonics Research
  • Vol. 8, Issue 1, 78 (2020)
Tian Jiang1、†,*, Ke Yin2、†, Cong Wang3、†, Jie You2, Hao Ouyang1, Runlin Miao1, Chenxi Zhang1, Ke Wei1, Han Li1, Haitao Chen1, Renyan Zhang1, Xin Zheng2, Zhongjie Xu1, Xiangai Cheng1, and Han Zhang3、4
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 2National Innovation Institute of Defense Technology, Academy of Military Sciences China, Beijing 100071, China
  • 3Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
  • 4e-mail: hzhang@szu.edu.cn
  • show less
    DOI: 10.1364/PRJ.8.000078 Cite this Article Set citation alerts
    Tian Jiang, Ke Yin, Cong Wang, Jie You, Hao Ouyang, Runlin Miao, Chenxi Zhang, Ke Wei, Han Li, Haitao Chen, Renyan Zhang, Xin Zheng, Zhongjie Xu, Xiangai Cheng, Han Zhang. Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect[J]. Photonics Research, 2020, 8(1): 78 Copy Citation Text show less
    References

    [1] U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, J. Aus der Au. Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Sel. Top. Quantum Electron., 2, 435-453(1996).

    [2] X. Liu, Q. Guo, J. Qiu. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics. Adv. Funct. Mater., 29, 1605886(2017).

    [3] F. Wang. Two-dimensional materials for ultrafast lasers. Chin. Phys. B, 26, 034202(2017).

    [4] T. Jiang, R. Miao, J. Zhao, Z. Xu, T. Zhou, K. Wei, J. You, X. Zheng, Z. Wang, X. A. Cheng. Electron-phonon coupling in topological insulator Bi2Se3 thin films with different substrates. Chin. Opt. Lett., 17, 020005(2019).

    [5] L. Miao, J. Yi, Q. Wang, D. Feng, H. He, S. Lu, C. Zhao, H. Zhang, S. Wen. Broadband third order nonlinear optical responses of bismuth telluride nanosheets. Opt. Mater. Express, 6, 2244-2251(2016).

    [6] Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, X. F. Yu. Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv. Mater., 29, 1703811(2017).

    [7] T. Fan, Y. Zhou, M. Qiu, H. Zhang. Black phosphorus: a novel nanoplatform with potential in the field of bio-photonic nanomedicine. J. Innov. Opt. Heal. Sci., 11, 1830003(2018).

    [8] X. Chen, G. Xu, X. Ren, Z. Li, X. Qi, K. Huang, H. Zhang, Z. Huang, J. Zhong. A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors. J. Mater. Chem. A, 5, 6581-6588(2017).

    [9] Q. Jiang, L. Xu, N. Chen, H. Zhang, L. Dai, S. Wang. Facile synthesis of black phosphorus: an efficient electrocatalyst for the oxygen evolving reaction. Angew. Chem. (Int. Ed. Engl.), 55, 13849-13853(2016).

    [10] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater., 19, 3077-3083(2009).

    [11] H. Yu, X. Zheng, K. Yin, X. A. Cheng, T. Jiang. Nanosecond passively Q-switched thulium/holmium-doped fiber laser based on black phosphorus nanoplatelets. Opt. Mater. Express, 6, 603-609(2016).

    [12] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari. Graphene mode-locked ultrafast laser. ACS Nano, 4, 803-810(2010).

    [13] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197-200(2005).

    [14] A. K. Geim, K. S. Novoselov. The rise of graphene. Nat. Mater., 6, 183-191(2007).

    [15] J. E. Moore. The birth of topological insulators. Nature, 464, 194-198(2010).

    [16] H. Zhang, C. Liu, X. Qi, X. Dai, Z. Fang, S. Zhang. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys., 5, 438-442(2009).

    [17] K. F. Mak, J. Shan. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics, 10, 216-226(2016).

    [18] A. J. Fleisher, D. A. Long, Z. D. Reed, J. T. Hodges, D. F. Plusquellic. Coherent cavity-enhanced dual-comb spectroscopy. Opt. Express, 24, 10424-10434(2016).

    [19] F. Xia, H. Wang, Y. Jia. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun., 5, 4458(2014).

    [20] M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, A. Castellanos-Gomez. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett., 14, 3347-3352(2014).

    [21] Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, R. Podila. Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes. Adv. Funct. Mater., 30, 1705714(2018).

    [22] M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi. 25th anniversary article: Mxenes: a new family of two-dimensional materials. Adv. Funct. Mater., 26, 992-1005(2014).

    [23] E. Aktürk, O. Ü. Aktürk, S. Ciraci. Single and bilayer bismuthene: stability at high temperature and mechanical and electronic properties. Phys. Rev. B, 94, 014115(2016).

    [24] M. Pumera, Z. Sofer. 2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus. Adv. Mater., 29, 1605299(2017).

    [25] S. Yamashita, A. Martinez, B. Xu. Short pulse fiber lasers mode-locked by carbon nanotubes and graphene. Opt. Fiber Technol., 20, 702-713(2014).

    [26] G. Soboń. Mode-locking of fiber lasers using novel two-dimensional nanomaterials: graphene and topological insulators [invited]. Photon. Res., 3, A56-A63(2015).

    [27] Z. C. Luo, M. Liu, A. P. Luo, W. C. Xu. Two-dimensional materials-decorated microfiber devices for pulse generation and shaping in fiber lasers. Chin. Phys. B, 27, 094215(2018).

    [28] K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, J. Chen. High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited). Opt. Commun., 406, 214-229(2018).

    [29] J. He, L. Tao, H. Zhang, B. Zhou, J. Li. Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers. Nanoscale, 11, 2577-2593(2019).

    [30] B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, C. Yang. Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2  μm. IEEE J. Sel. Top. Quantum Electron., 20, 1100705(2014).

    [31] Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X. Jiang, H. Zhang, S. Wen. Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications. Sci. Rep., 5, 16372(2015).

    [32] L. Kong, Z. Qin, G. Xie, Z. Guo, H. Zhang, P. Yuan, L. Qian. Black phosphorus as broadband saturable absorber for pulsed lasers from 1  μm to 2.7  μm wavelength. Laser Phys. Lett., 13, 045801(2016).

    [33] Y.-W. Song, S.-Y. Jang, W.-S. Han, M.-K. Bae. Graphene mode-lockers for fiber lasers functioned with evanescent field interaction. Appl. Phys. Lett., 96, 051122(2010).

    [34] S. Yamashita. A tutorial on nonlinear photonic applications of carbon nanotube and graphene. J. Lightwave Technol., 30, 427-447(2012).

    [35] H. Zhang, X. He, W. Lin, R. Wei, F. Zhang, X. Du, G. Dong, J. Qiu. Ultrafast saturable absorption in topological insulator Bi2SeTe2 nanosheets. Opt. Express, 23, 13376-13383(2015).

    [36] H. Zhang, S. Virally, Q. Bao, L. Kian Ping, S. Massar, N. Godbout, P. Kockaert. Z-scan measurement of the nonlinear refractive index of graphene. Opt. Lett., 37, 1856-1858(2012).

    [37] X. Zheng, Y. Zhang, R. Chen, X. A. Cheng, Z. Xu, T. Jiang. Z-scan measurement of the nonlinear refractive index of monolayer WS2. Opt. Express, 23, 15616-15623(2015).

    [38] G. Wang, K. Wang, B. M. Szydłowska, A. A. Baker-Murray, J. J. Wang, Y. Feng, X. Zhang, J. Wang, W. J. Blau. Ultrafast nonlinear optical properties of a graphene saturable mirror in the 2  μm wavelength region. Laser Photon. Rev., 11, 1700166(2017).

    [39] P. Miró, M. Audiffred, T. Heine. An atlas of two-dimensional materials. Chem. Soc. Rev., 43, 6537-6554(2014).

    [40] K. J. Koski, C. D. Wessells, B. W. Reed, J. J. Cha, D. Kong, Y. Cui. Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons. J. Am. Chem. Soc., 134, 13773-13779(2012).

    [41] J. Zhao, Z. Xu, Y. Zang, Y. Gong, X. Zheng, K. He, X. A. Cheng, T. Jiang. Thickness-dependent carrier and phonon dynamics of topological insulator Bi2Te3 thin films. Opt. Express, 25, 14635-14643(2017).

    [42] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, F. Wang. Emerging photoluminescence in monolayer MoS2. Nano Lett., 10, 1271-1275(2010).

    [43] M. Xu, T. Liang, M. Shi, H. Chen. Graphene-like two-dimensional materials. Chem. Rev., 113, 3766-3798(2013).

    [44] S. Lu, J. Leburton. Electronic structures of defects and magnetic impurities in MoS2 monolayers. Nanoscale Res. Lett., 9, 676(2014).

    [45] V. Tran, R. Soklaski, Y. Liang, L. Yang. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B, 89, 235319(2014).

    [46] V. Tran, R. Fei, L. Yang. Quasiparticle energies, excitons, and optical spectra of few-layer black phosphorus. 2D Mater., 2, 044014(2015).

    [47] Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, Y. M. Jhon. Metallic MXene saturable absorber for femtosecond mode-locked lasers. Adv. Funct. Mater., 29, 1702496(2017).

    [48] M.-Y. Liu, Y. Huang, Q.-Y. Chen, Z.-Y. Li, C. Cao, Y. He. Strain and electric field tunable electronic structure of buckled bismuthene. RSC Adv., 7, 39546-39555(2017).

    [49] Q.-Q. Yang, R.-T. Liu, C. Huang, Y.-F. Huang, L.-F. Gao, B. Sun, Z.-P. Huang, L. Zhang, C.-X. Hu, Z.-Q. Zhang, C.-L. Sun, Q. Wang, Y.-L. Tang, H.-L. Zhang. 2D bismuthene fabricated via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers. Nanoscale, 10, 21106-21115(2018).

    [50] M. Z. Hasan, C. L. Kane. Colloquium: topological insulators. Rev. Mod. Phys., 82, 3045-3067(2010).

    [51] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, H. Zhang. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem., 5, 263-275(2013).

    [52] M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, M. F. Crommie. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater., 13, 1091-1095(2014).

    [53] J. Lee, J. Koo, J. Lee, Y. M. Jhon, J. H. Lee. All-fiberized, femtosecond laser at 1912  nm using a bulk-like MoSe2 saturable absorber. Opt. Mater. Express, 7, 2968-2979(2017).

    [54] Y. Cui, F. Lu, X. Liu. Nonlinear saturable and polarization-induced absorption of rhenium disulfide. Sci. Rep., 7, 40080(2017).

    [55] A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, H. S. J. van der Zant. Isolation and characterization of few-layer black phosphorus. 2D Mater., 1, 025001(2014).

    [56] J. Sotor, G. Soboń, W. Macherzynski, P. Paletko, K. M. Abramski. Black phosphorus saturable absorber for ultrashort pulse generation. Appl. Phys. Lett., 107, 051108(2015).

    [57] L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, Y. Zhang. Black phosphorus field-effect transistors. Nat. Nano, 9, 372-377(2014).

    [58] J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, H. Zhang. Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers. Sci. Rep., 7, 42357(2017).

    [59] J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, L. Su. Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region. Opt. Express, 24, 30289-30295(2016).

    [60] K. Wang, B. M. Szydlowska, G. Wang, X. Zhang, J. J. Wang, J. J. Magan, L. Zhang, J. N. Coleman, J. Wang, W. J. Blau. Ultrafast nonlinear excitation dynamics of black phosphorus nanosheets from visible to mid-infrared. ACS Nano, 10, 6923-6932(2016).

    [61] D. Na, K. Park, K.-H. Park, Y.-W. Song. Passivation of black phosphorus saturable absorbers for reliable pulse formation of fiber lasers. Nanotechnology, 28, 475207(2017).

    [62] M. Naguib, J. Come, B. Dyatkin, V. Presser, P.-L. Taberna, P. Simon, M. W. Barsoum, Y. Gogotsi. MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem. Commun., 16, 61-64(2012).

    [63] P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, Q. Bao. Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers. ACS Appl. Mater. Interfaces, 9, 12759-12765(2017).

    [64] Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang, W. Wang, Y. Wang, X. Zhu, K. Lu, H. Zhang, S. T. Lee, Q. Bao, W. Ma. Pulsed lasers employing solution-processed plasmonic Cu3−xP colloidal nanocrystals. Adv. Mater., 28, 3535-3542(2016).

    [65] Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, H. Zhang. Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Mater., 4, 045010(2017).

    [66] R. Frisenda, E. Navarro-Moratalla, P. Gant, D. Perez De Lara, P. Jarillo-Herrero, R. V. Gorbachev, A. Castellanos-Gomez. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev., 47, 53-68(2018).

    [67] Y. Wang, H. Mu, X. Li, J. Yuan, J. Chen, S. Xiao, Q. Bao, Y. Gao, J. He. Observation of large nonlinear responses in a graphene-Bi2Te3 heterostructure at a telecommunication wavelength. Appl. Phys. Lett., 108, 221901(2016).

    [68] H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, Q. Bao. Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation. ACS Photon., 2, 832-841(2015).

    [69] W. Liu, Y.-N. Zhu, M. Liu, B. Wen, S. Fang, H. Teng, M. Lei, L.-M. Liu, Z. Wei. Optical properties and applications for MoS2-Sb2Te3-MoS2 heterostructure materials. Photon. Res., 6, 220-227(2018).

    [70] Z. Wang, H. Mu, J. Yuan, C. Zhao, Q. Bao, H. Zhang. Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers. IEEE J. Sel. Top. Quantum Electron., 23, 8800105(2016).

    [71] H. Chen, J. Yin, J. Yang, X. Zhang, M. Liu, Z. Jiang, J. Wang, Z. Sun, T. Guo, W. Liu, P. Yan. Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics. Opt. Lett., 42, 4279-4282(2017).

    [72] B. G. B. Guo. 2D noncarbon materials-based nonlinear optical devices for ultrafast photonics [invited]. Chin. Opt. Lett., 16, 020004(2018).

    [73] Y. M. Chang, H. Kim, J. H. Lee, Y.-W. Song. Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers. Appl. Phys. Lett., 97, 211102(2010).

    [74] K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, W. J. Blau. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano, 7, 9260-9267(2013).

    [75] X. Zhang, Y. Xie. Recent advances in free-standing two-dimensional crystals with atomic thickness: design, assembly and transfer strategies. Chem. Soc. Rev., 42, 8187-8199(2013).

    [76] C. Y. Yeh, C. Y. Su, G. R. Lin, H. H. Kuo, L. J. Li, P. L. Huang, S. C. Lin, S. H. Huang, W. H. Cheng. Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber. Opt. Express, 20, 2460-2465(2012).

    [77] P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen. A 2.95  GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film. Opt. Express, 23, 154-164(2015).

    [78] M. Kowalczyk, J. Bogusławski, R. Zybała, K. Mars, A. Mikuła, G. Soboń, J. Sotor. Sb2Te3-deposited D-shaped fiber as a saturable absorber for mode-locked Yb-doped fiber lasers. Opt. Mater. Express, 6, 2273-2282(2016).

    [79] L. Miao, Y. Jiang, S. Lu, B. Shi, C. Zhao, H. Zhang, S. Wen. Broadband ultrafast nonlinear optical response of few-layers graphene: toward the mid-infrared regime. Photon. Res., 3, 214-219(2015).

    [80] H. Hao, Z. Xu, T. Jiang, K. Wei, H. Li, X. Zheng, K. Yin, J. You, C. Shen, X. A. Cheng. Visualized charge transfer processes in monolayer composition-graded WS2xSe2(1x) lateral heterojunctions via ultrafast microscopy mapping. Opt. Express, 26, 15867-15886(2018).

    [81] M. C. Fischer, J. W. Wilson, F. E. Robles, W. S. Warren. Invited review article: pump-probe microscopy. Rev. Sci. Instrum., 87, 031101(2016).

    [82] A. Reina, H. B. Son, L. Y. Jiao, B. Fan, M. S. Dresselhaus, Z. F. Liu, J. Kong. Transferring and identification of single- and few-layer graphene on arbitrary substrates. J. Phys. Chem. C, 112, 17741-17744(2008).

    [83] T. Chen, C. Liao, D. N. Wang, Y. Wang. Polarization-locked vector solitons in a mode-locked fiber laser using polarization-sensitive few-layer graphene deposited D-shaped fiber saturable absorber. J. Opt. Soc. Am. B, 31, 1377-1382(2014).

    [84] X. Liu, H. Yang, Y. Cui, G. Chen, Y. Yang, X. Wu, X. Yao, D. Han, X. Han, C. Zeng. Graphene-clad microfibre saturable absorber for ultrafast fibre lasers. Sci. Rep., 6, 26024(2016).

    [85] D. Steinberg, J. Diego Zapata, E. A. Thoroh de Souza, L. A. M. Saito. Mechanically exfoliated graphite onto D-shaped optical fiber for femtosecond mode-locked erbium-doped fiber laser. J. Lightwave Technol., 36, 1868-1874(2018).

    [86] J. Zhao, S. Ruan, P. Yan, H. Zhang, Y. Yu, H. Wei, J. Luo. Cladding-filled graphene in a photonic crystal fiber as a saturable absorber and its first application for ultrafast all-fiber laser. Opt. Eng., 52, 106105(2013).

    [87] S. Ko, J. Lee, J. Koo, B. S. Joo, M. Gu, J. H. Lee. Chemical wet etching of an optical fiber using a hydrogen fluoride-free solution for a saturable absorber based on the evanescent field interaction. J. Lightwave Technol., 34, 3776-3784(2016).

    [88] H. Jeong, S. Y. Choi, F. Rotermund, Y.-H. Cha, D.-Y. Jeong, D.-I. Yeom. All-fiber mode-locked laser oscillator with pulse energy of 34  nJ using a single-walled carbon nanotube saturable absorber. Opt. Express, 22, 22667-22672(2014).

    [89] L. Gao, T. Zhu, Y. J. Li, W. Huang, M. Liu. Watt-level ultrafast fiber laser based on weak evanescent interaction with reduced graphene oxide. IEEE Photon. Technol. Lett., 28, 1245-1248(2016).

    [90] D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, J. Zhao. WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55  μm. Opt. Express, 23, 27509-27519(2015).

    [91] H. Shalibeik. Rare-Earth-Doped Fiber Lasers and Amplifiers(2007).

    [92] W. Shi, Q. Fang, X. Zhu, R. A. Norwood, N. Peyghambarian. Fiber lasers and their applications [invited]. Appl. Opt., 53, 6554-6568(2014).

    [93] D. D. Hudson. Invited paper: short pulse generation in mid-IR fiber lasers. Opt. Fiber Technol., 20, 631-641(2014).

    [94] F. Haxsen, A. Wienke, D. Wandt, J. Neumann, D. Kracht. Tm-doped mode-locked fiber lasers. Opt. Fiber Technol., 20, 650-656(2014).

    [95] H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt. Express, 17, 17630-17635(2009).

    [96] L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, K. P. Loh. Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene. Opt. Lett., 35, 3622-3624(2010).

    [97] M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, J. R. Taylor. Tm-doped fiber laser mode-locked by graphene-polymer composite. Opt. Express, 20, 25077-25084(2012).

    [98] N. T. V. Dvoyrin, E. Sorokin, I. Sorokina, A. Kurkov. Graphene-mode-locked Holmium fiber laser operating beyond 2.1  μm. European Conference on Lasers and Electro-Optics—European Quantum Electronics Conference, CJ_7_4(2015).

    [99] C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, D. Tang. Ultra-short pulse generation by a topological insulator based saturable absorber. Appl. Phys. Lett., 101, 211106(2012).

    [100] H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, K. P. Loh. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt. Express, 22, 7249-7260(2014).

    [101] Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, D. Fan. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation. Opt. Express, 23, 12823-12833(2015).

    [102] L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, H. Zhang. Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability. Laser Photon. Rev., 12, 1700221(2018).

    [103] Z. Dou, Y. Song, J. Tian, J. Liu, Z. Yu, X. Fang. Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi2Se3. Opt. Express, 22, 24055-24061(2014).

    [104] M. Jung, J. Lee, J. Koo, J. Park, Y. Song, K. Lee, S. Lee, J. H. Lee. A femtosecond pulse fiber laser at 1935  nm using a bulk-structured Bi2Te3 topological insulator. Opt. Express, 22, 7865-7874(2014).

    [105] H. Liu, A.-P. Luo, F.-Z. Wang, R. Tang, M. Liu, Z.-C. Luo, W.-C. Xu, C.-J. Zhao, H. Zhang. Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber. Opt. Lett., 39, 4591-4594(2014).

    [106] M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, J. H. Lee. Mode-locked, 1.94-μm, all-fiberized laser using WS2-based evanescent field interaction. Opt. Express, 23, 19996-20006(2015).

    [107] A. A. Latiff, M. F. M. Rusdi, M. B. Hisyam, H. Ahmad, S. W. Harun. Black phosphorus as a saturable absorber for generating mode-locked fiber laser in normal dispersion regime. Proc. SPIE, 10150, 101500U(2016).

    [108] J. Sotor, G. Soboń, M. Kowalczyk, W. Macherzynski, P. Paletko, K. M. Abramski. Ultrafast thulium-doped fiber laser mode locked with black phosphorus. Opt. Lett., 40, 3885-3888(2015).

    [109] K. Yin, T. Jiang, X. Zheng, H. Yu, X. Cheng, J. Hou. Mid-infrared ultra-short mode-locked fiber laser utilizing topological insulator Bi2Te3 nano-sheets as the saturable absorber(2015).

    [110] G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, N. Peyghambarian. Graphene mode-locked fiber laser at 2.8  μm. IEEE Photon. Technol. Lett., 28, 7-10(2016).

    [111] Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, L. Qian. Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber. Opt. Lett., 41, 56-59(2016).

    [112] Z. Qin, T. Hai, G. Xie, J. Ma, P. Yuan, L. Qian, L. Li, L. Zhao, D. Shen. Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5  μm wavelength. Opt. Express, 26, 8224-8231(2018).

    [113] C. A. Schäfer, H. Uehara, D. Konishi, S. Hattori, H. Matsukuma, M. Murakami, S. Shimizu, S. Tokita. Fluoride-fiber-based side-pump coupler for high-power fiber lasers at 2.8  μm. Opt. Lett., 43, 2340-2343(2018).

    [114] N. Q. Ngo. Ultra-Fast Fiber Lasers: Principles and Applications with MATLAB Models(2011).

    [115] J. R. Taylor. Optical Solitons: Theory and Experiment(1992).

    [116] J. Jeon, J. Lee, J. H. Lee. Numerical study on the minimum modulation depth of a saturable absorber for stable fiber laser mode locking. J. Opt. Soc. Am. B, 32, 31-37(2014).

    [117] G. Soboń, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, K. M. Abramski. Multilayer graphene-based saturable absorbers with scalable modulation depth for mode-locked Er- and Tm-doped fiber lasers. Opt. Mater. Express, 5, 2884-2894(2015).

    [118] J. Zhang, T. Jiang, T. Zhou, H. Ouyang, C. Zhang, Z. Xin, Z. Wang, X. A. Cheng. Saturated absorption of different layered Bi2Se3 films in the resonance zone [invited]. Photon. Res., 6, C8-C14(2018).

    [119] H.-D. Xia, H.-P. Li, C.-Y. Lan, C. Li, G.-L. Deng, J.-F. Li, Y. Liu. Passive harmonic mode-locking of Er-doped fiber laser using CVD-grown few-layer MoS2 as a saturable absorber. Chin. Phys. B, 24, 084206(2015).

    [120] D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, A. C. Ferrari. Sub 200  fs pulse generation from a graphene mode-locked fiber laser. Appl. Phys. Lett., 97, 203106(2010).

    [121] R. Lindberg, J. Bogusławski, I. Pasternak, A. Przewloka, F. Laurell, V. Pasiskevicius, J. Sotor. Mapping mode-locking regimes in a polarization-maintaining Er-doped fiber laser. IEEE J. Sel. Top. Quantum Electron., 24, 1101709(2018).

    [122] J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, G. Soboń. Sub-90  fs a stretched-pulse mode-locked fiber laser based on a graphene saturable absorber. Opt. Express, 23, 27503-27508(2015).

    [123] G. Soboń, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, K. M. Abramski. All-polarization maintaining, graphene-based femtosecond Tm-doped all-fiber laser. Opt. Express, 23, 9339-9346(2015).

    [124] M. Pawliszewska, A. Przewloka, J. Sotor. Stretched-pulse Ho-doped fiber laser mode-locked by graphene based saturable absorber. Proc. SPIE, 10512, 105121A(2018).

    [125] J. Sotor, G. Soboń. 24  fs and 3  nJ pulse generation from a simple, all polarization maintaining Er-doped fiber laser. Laser Phys. Lett., 13, 125102(2016).

    [126] G. Soboń, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, K. M. Abramski. 260  fs and 1  nJ pulse generation from a compact, mode-locked Tm-doped fiber laser. Opt. Express, 23, 31446-31451(2015).

    [127] W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, Z. Wei. 70-fs mode-locked erbium-doped fiber laser with topological insulator. Sci. Rep., 6, 19997(2016).

    [128] W. Liu, M. Liu, Y. OuYang, H. Hou, G. Ma, M. Lei, Z. Wei. Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration. Nanotechnology, 29, 174002(2018).

    [129] W. Liu, L. Pang, H. Han, M. Liu, M. Lei, S. Fang, H. Teng, Z. Wei. Tungsten disulfide saturable absorbers for 67  fs mode-locked erbium-doped fiber lasers. Opt. Express, 25, 2950-2959(2017).

    [130] X. Jin, G. Hu, M. Zhang, Y. Hu, T. Albrow-Owen, R. C. T. Howe, T. C. Wu, Q. Wu, Z. Zheng, T. Hasan. 102  fs pulse generation from a long-term stable, inkjet-printed black phosphorus-mode-locked fiber laser. Opt. Express, 26, 12506-12513(2018).

    [131] J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, Y. Liu. Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers. Sci. Rep., 6, 30361(2016).

    [132] B. Guo, S. H. Wang, Z. X. Wu, Z. X. Wang, D. H. Wang, H. Huang, F. Zhang, Y. Q. Ge, H. Zhang. Sub-200  fs soliton mode-locked fiber laser based on bismuthene saturable absorber. Opt. Express, 26, 22750-22760(2018).

    [133] X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, H. Zhang. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photon. Rev., 12, 1700229(2018).

    [134] A. Martinez, S. Yamashita. 10  GHz fundamental mode fiber laser using a graphene saturable absorber. Appl. Phys. Lett., 101, 041118(2012).

    [135] G. Soboń, J. Sotor, K. M. Abramski. Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22  GHz. Appl. Phys. Lett., 100, 161109(2012).

    [136] Y. L. Qi, H. Liu, H. Cui, Y. Q. Huang, Q. Y. Ning, M. Liu, Z. C. Luo, A. P. Luo, W. C. Xu. Graphene-deposited microfiber photonic device for ultrahigh-repetition rate pulse generation in a fiber laser. Opt. Express, 23, 17720-17726(2015).

    [137] M. Liu, R. Tang, A.-P. Luo, W.-C. Xu, Z.-C. Luo. Graphene-decorated microfiber knot as a broadband resonator for ultrahigh repetition-rate pulse fiber lasers. Photon. Res., 6, C1-C7(2018).

    [138] Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, W. C. Xu. 2  GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber. Opt. Lett., 38, 5212-5215(2013).

    [139] K. Wu, X. Zhang, J. Wang, J. Chen. 463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber. Opt. Lett., 40, 1374-1377(2015).

    [140] J. Koo, J. Park, J. Lee, Y. M. Jhon, J. H. Lee. Femtosecond harmonic mode-locking of a fiber laser at 3.27  GHz using a bulk-like, MoSe2-based saturable absorber. Opt. Express, 24, 10575-10589(2016).

    [141] M. Pawliszewska, Y. Ge, Z. Li, H. Zhang, J. Sotor. Fundamental and harmonic mode-locking at 2.1  μm with black phosphorus saturable absorber. Opt. Express, 25, 16916-16921(2017).

    [142] J. Kim, Y. Song. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Adv. Opt. Photon., 8, 465-540(2016).

    [143] N. Picqué, T. W. Hänsch. Frequency comb spectroscopy. Nat. Photonics, 13, 146-157(2019).

    [144] G. Soboń, P. R. Kaczmarek, D. Sliwinska, J. Sotor, K. M. Abramski. High-power fiber-based femtosecond CPA system at 1560  nm. IEEE J. Sel. Top. Quantum Electron., 20, 492-495(2014).

    [145] P. Yan, Z. Jiang, H. Chen, J. Yin, J. Lai, J. Wang, T. He, J. Yang. α-In2Se3 wideband optical modulator for pulsed fiber lasers. Opt. Lett., 43, 4417-4420(2018).

    [146] J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, S. Ruan. High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber. Photon. Res., 6, 535-541(2018).

    [147] J. Wang, J. Yin, T. He, P. Yan. Sb2Te3 mode-locked ultrafast fiber laser at 1.93  μm. Chin. Phys. B, 27, 084214(2018).

    [148] J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, S. Ruan. Magnetron-sputtering deposited WTe2 for an ultrafast thulium-doped fiber laser. Opt. Lett., 42, 5010-5013(2017).

    [149] J. Sotor, G. Soboń, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, K. M. Abramski. Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber. Opt. Express, 22, 5536-5543(2014).

    [150] J. Sotor, T. Martynkien, P. G. Schunemann, P. Mergo, L. Rutkowski, G. Soboń. All-fiber mid-infrared source tunable from 6 to 9  μm based on difference frequency generation in OP-GaP crystal. Opt. Express, 26, 11756-11763(2018).

    [151] P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, J. M. Dudley. Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser. Nat. Photonics, 12, 221-227(2018).

    [152] J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. V. Churkin, S. K. Turitsyn, H. Zeng. Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers. Commun. Phys., 1, 20(2018).

    [153] X. Liu, X. Yao, Y. Cui. Real-time observation of the buildup of soliton molecules. Phys. Rev. Lett., 121, 023905(2018).

    [154] Y. Cui, X. Liu. Revelation of the birth and extinction dynamics of solitons in SWNT-mode-locked fiber lasers. Photon. Res., 7, 423-430(2019).

    [155] X. Yi, Q. F. Yang, K. Y. Yang, K. Vahala. Imaging soliton dynamics in optical microcavities. Nat. Commun., 9, 3565(2018).

    [156] P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu, Y. Qiu, J. Xu, Z. Zou, C. Wang, H. Yan, Y. Luo, A. Pan, H. Zhang, J. C. Ho, K. M. Yu. On-nanowire axial heterojunction design for high-performance photodetectors. ACS Nano, 10, 8474-8481(2016).

    [157] X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, H. Zhang. Environmentally robust black phosphorus nanosheets in solution: application for self-powered photodetector. Adv. Funct. Mater., 27, 1606834(2017).

    [158] Z. Huang, W. Han, H. Tang, L. Ren, D. S. Chander, X. Qi, H. Zhang. Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure. 2D Mater., 2, 035011(2015).

    [159] T. Jiang, Y. Zang, H. Sun, X. Zheng, Y. Liu, Y. Gong, L. Fang, X. A. Cheng, K. He. Broadband high-responsivity photodetectors based on large-scale topological crystalline insulator SnTe ultrathin film grown by molecular beam epitaxy. Adv. Opt. Mater., 5, 1600727(2017).

    [160] H. Sun, T. Jiang, Y. Zang, X. Zheng, Y. Gong, Y. Yan, Z. Xu, Y. Liu, L. Fang, X. A. Cheng. Broadband ultrafast photovoltaic detectors based on large-scale topological insulator Sb2Te3/STO heterostructures. Nanoscale, 9, 9325-9332(2017).

    [161] S. Bai, C. Sun, H. Yan, X. Sun, H. Zhang, L. Luo, X. Lei, P. Wan, X. Chen. Healable, transparent, room-temperature electronic sensors based on carbon nanotube network-coated polyelectrolyte multilayers. Small, 11, 5807-5813(2015).

    [162] P. Wan, X. Wen, C. Sun, B. K. Chandran, H. Zhang, X. Sun, X. Chen. Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing. Small, 11, 5409-5415(2015).

    [163] T. Wang, Y. Guo, P. Wan, X. Sun, H. Zhang, Z. Yu, X. Chen. A flexible transparent colorimetric wrist strap sensor. Nanoscale, 9, 869-874(2017).

    [164] T. Wang, Y. Guo, P. Wan, H. Zhang, X. Chen, X. Sun. Flexible transparent electronic gas sensors. Small, 12, 3748-3756(2016).

    [165] D. Li, H. Xue, M. Qi, Y. Wang, S. Aksimsek, N. Chekurov, W. Kim, C. Li, J. Riikonen, F. Ye, Q. Dai, Z. Ren, J. Bai, T. Hasan, H. Lipsanen, Z. Sun. Graphene actively Q-switched lasers. 2D Mater., 4, 025095(2017).

    [166] J. Bogusławski, Y. Wang, H. Xue, X. Yang, D. Mao, X. Gan, Z. Ren, J. Zhao, Q. Dai, G. Soboń, J. Sotor, Z. Sun. Graphene actively mode-locked lasers. Adv. Funct. Mater., 28, 1801539(2018).

    [167] Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, H. Zhang. An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator. Laser Photon. Rev., 13, 1800313(2019).

    [168] K.-J. Peng, C.-L. Wu, Y.-H. Lin, H.-Y. Wang, C.-H. Cheng, Y.-C. Chi, G.-R. Lin. Saturated evanescent-wave absorption of few-layer graphene-covered side-polished single-mode fiber for all-optical switching. Nanophotonics, 7, 207-215(2018).

    [169] Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, D. Fan. Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices. Adv. Opt. Mater., 6, 1701166(2018).

    [170] J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, H. Zhang. Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation. Adv. Opt. Mater., 5, 1700026(2017).

    [171] Y. Wang, W. Huang, J. Zhao, H. Huang, C. Wang, F. Zhang, J. Liu, J. Li, M. Zhang, H. Zhang. A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect. J. Mater. Chem. C, 7, 871-878(2019).

    [172] Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, H. Zhang. All-optical phosphorene phase modulator with enhanced stability under ambient conditions. Laser Photon. Rev., 12, 1800016(2018).

    [173] Q. Wu, S. Chen, Y. Wang, L. Wu, X. Jiang, F. Zhang, X. Jin, Q. Jiang, Z. Zheng, J. Li, M. Zhang, H. Zhang. MZI-based all-optical modulator using MXene Ti3C2Tx (T = F, O, or OH) deposited microfiber. Adv. Mater. Technol., 4, 1800532(2019).

    [174] J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen, R. Cao, Z. Guo, K. Wang, Y. Zhang, J. Ji, M. Zhang, D. Fan, H. Zhang. Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability. ACS Photon., 4, 1466-1476(2017).

    [175] S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, Y. Liu, S. Wen, D. Fan. Few-layer topological insulator for all-optical signal processing using the nonlinear Kerr effect. Adv. Opt. Mater., 3, 1769-1778(2015).

    CLP Journals

    [1] Qiuquan Yan, Qinghui Deng, Jun Zhang, Ying Zhu, Ke Yin, Teng Li, Dan Wu, Tian Jiang. Low-latency deep-reinforcement learning algorithm for ultrafast fiber lasers[J]. Photonics Research, 2021, 9(8): 1493

    [2] Mengyu Zhang, Hao Chen, Jinde Yin, Jintao Wang, Jinzhang Wang, Peiguang Yan. Recent development of saturable absorbers for ultrafast lasers [Invited][J]. Chinese Optics Letters, 2021, 19(8): 081405

    [3] Zhenhong Wang, Bin Zhang, Bing Hu, Zhongjun Li, Chunyang Ma, Yu Chen, Yufeng Song, Han Zhang, Jun Liu, Guohui Nie. Two-dimensional tin diselenide nanosheets pretreated with an alkaloid for near- and mid-infrared ultrafast photonics[J]. Photonics Research, 2020, 8(11): 1687

    Tian Jiang, Ke Yin, Cong Wang, Jie You, Hao Ouyang, Runlin Miao, Chenxi Zhang, Ke Wei, Han Li, Haitao Chen, Renyan Zhang, Xin Zheng, Zhongjie Xu, Xiangai Cheng, Han Zhang. Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect[J]. Photonics Research, 2020, 8(1): 78
    Download Citation