• Photonics Research
  • Vol. 8, Issue 1, 78 (2020)
Tian Jiang1、†,*, Ke Yin2、†, Cong Wang3、†, Jie You2, Hao Ouyang1, Runlin Miao1, Chenxi Zhang1, Ke Wei1, Han Li1, Haitao Chen1, Renyan Zhang1, Xin Zheng2, Zhongjie Xu1, Xiangai Cheng1, and Han Zhang3、4
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 2National Innovation Institute of Defense Technology, Academy of Military Sciences China, Beijing 100071, China
  • 3Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
  • 4e-mail: hzhang@szu.edu.cn
  • show less
    DOI: 10.1364/PRJ.8.000078 Cite this Article Set citation alerts
    Tian Jiang, Ke Yin, Cong Wang, Jie You, Hao Ouyang, Runlin Miao, Chenxi Zhang, Ke Wei, Han Li, Haitao Chen, Renyan Zhang, Xin Zheng, Zhongjie Xu, Xiangai Cheng, Han Zhang. Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect[J]. Photonics Research, 2020, 8(1): 78 Copy Citation Text show less
    Fiber integration with 2D materials. (a)–(c) Transmission coupling; (d)–(g) evanescent-wave coupling; 2D materials are deposited or transferred on (a) fiber ends, (b) transparent plate, (c) reflection mirror, (d) tapered fiber, (e) side-polished fiber, (f) photonic crystal fiber, and (g) cladding-etched fiber.
    Fig. 1. Fiber integration with 2D materials. (a)–(c) Transmission coupling; (d)–(g) evanescent-wave coupling; 2D materials are deposited or transferred on (a) fiber ends, (b) transparent plate, (c) reflection mirror, (d) tapered fiber, (e) side-polished fiber, (f) photonic crystal fiber, and (g) cladding-etched fiber.
    First demonstrations of UFLs mode-locked by 2D materials at different wavelengths.
    Fig. 2. First demonstrations of UFLs mode-locked by 2D materials at different wavelengths.
    CVD-grown graphene mode-locked EDFL [10]. (a) Laser configuration; (b) output pulse train; (c) output laser spectrum; (d) autocorrelation trace. Reproduced with permission, Copyright 2009, Wiley-VCH.
    Fig. 3. CVD-grown graphene mode-locked EDFL [10]. (a) Laser configuration; (b) output pulse train; (c) output laser spectrum; (d) autocorrelation trace. Reproduced with permission, Copyright 2009, Wiley-VCH.
    Graphene mode-locked EDFL that delivers 24 fs pulses [125]. (a) Laser configuration; (b) optical spectrum; (c) autocorrelation trace; (d) measured RF spectrum. Reproduced with permission. Copyright 2016, IOP Publishing.
    Fig. 4. Graphene mode-locked EDFL that delivers 24 fs pulses [125]. (a) Laser configuration; (b) optical spectrum; (c) autocorrelation trace; (d) measured RF spectrum. Reproduced with permission. Copyright 2016, IOP Publishing.
    Hundred gigahertz repetition rate graphene mode-locked UFLs [137]. (a) Laser configuration; (b) graphene microfiber knot filter; (c) laser spectrum at 1 μm; (d) laser spectrum at 1.5 μm; (e) autocorrelation trace at 1 μm; (f) autocorrelation trace at 1.5 μm. Reproduced with permission. Copyright 2018, OSA Publishing.
    Fig. 5. Hundred gigahertz repetition rate graphene mode-locked UFLs [137]. (a) Laser configuration; (b) graphene microfiber knot filter; (c) laser spectrum at 1 μm; (d) laser spectrum at 1.5 μm; (e) autocorrelation trace at 1 μm; (f) autocorrelation trace at 1.5 μm. Reproduced with permission. Copyright 2018, OSA Publishing.
    Highly stable UFLs mode-locked by 2D materials. (a)–(c) Laser spectra; (d)–(f) measured RF spectra. (a) and (d), Ref. [146]; reproduced with permission; copyright 2018, OSA Publishing. (b) and (e), Ref. [148]; reproduced with permission; copyright 2017, OSA Publishing. (c) and (f), Ref. [128]; reproduced with permission; copyright 2018, IOP Publishing.
    Fig. 6. Highly stable UFLs mode-locked by 2D materials. (a)–(c) Laser spectra; (d)–(f) measured RF spectra. (a) and (d), Ref. [146]; reproduced with permission; copyright 2018, OSA Publishing. (b) and (e), Ref. [148]; reproduced with permission; copyright 2017, OSA Publishing. (c) and (f), Ref. [128]; reproduced with permission; copyright 2018, IOP Publishing.
    TypeGraphene [38,39]TIs [16,40,41]TMDs [4244]BP [45,46]MXenes [47]Bismuthene [24,48,49]
    Atomic structure
    Band structure (monolayer)
    Bandgap0 eV (monolayer) 0.25 eV (bilayer)0–0.7 eV1–2.5 eV0.35–2 eV (monolayer)
    Carrier lifetimeFast: Slow: Fast: 0.3–2 ps Slow: 3–23 psFast: Slow: 70–400 psFast: 360 fs Slow: 1.36 psFast: 3 ps Slow: 420 ps
    Table 1. 2D Material Family for UFLsa,b
    Laser ConfigurationSAPulse WidthWavelengthSpectral BandwidthRef.
    Dispersion compensated ring-cavity EDFL60-layer CVD-grown graphene88 fs1545 nm48 nm[122]
    Ring-cavity TDFL24-layer CVD-grown graphene603 fs1940 nm6.6 nm[123]
    Dispersion compensated ring-cavity HDFLFew-layers graphene190 fs2059 nm53.6 nm[124]
    Linear-cavity Er3+-doped ZBLAN fiber laser4–6 layer CVD-grown graphene42  ps2784.5 nm0.21 nm[110]
    Ring-cavity EDFL + EDFA30-layer CVD-grown graphene224 fs/24 fsa1560 nm11.5 nm/136 nmb[125]
    Ring-cavity TDFL + TDFA12-layer CVD-grown graphene656 fs/260 fsa1968 nm9.4 nm/15 nmb[126]
    Ring-cavity YDFL250 nm PMS-deposited TIBi2Te35.3 ps1036.7 nm8.28 nm[78]
    Ring-cavity EDFLPLD-prepared TISb2Te370 fs1542 nm63 nm[127]
    Ring-cavity EDFLBulk-structured TIBi2Te3795 fs1935 nm5.64 nm[104]
    Linear-cavity Ho3+-doped ZBLAN fiber laserLPE-prepared TIBi2Te36 ps2830 nm10 nm[109]
    Ring-cavity EDFLCVD-grown TMDWSe2163.5 fs1557.4 nm25.8 nm[128]
    Ring-cavity EDFLPLD-prepared TMDWS267 fs1540 nm114 nm[129]
    Ring-cavity EDFLLPE-prepared BP102 fs1555 nm40 nm[130]
    Ring-cavity TDFLME-prepared BP739 fs1910 nm5.8 nm[108]
    Linear-cavity Ho3+-doped ZBLAN fiber laserLPE-prepared BP8.6 ps2866.7 nm4.35 nm[131]
    Ring-cavity EDFLLPE-prepared bismuthene193 fs1561 nm14.4 nm[132]
    Ring-cavity EDFLMXene-Ti3C2Tx159 fs1555 nm22.2 nm[133]
    Table 2. UFLs Mode-Locked by 2D Materials with Short Pulse Widths
    Laser ConfigurationSARepetition RateRef.
    1  cm short linear-cavity EDFLLPE-prepared graphene9.67 GHz[134]
    21st-harmonic mode-locked ring-cavity EDFLME-prepared multilayer graphene2.22 GHz[135]
    Ring-cavity EDFL with FP filterLPE-prepared graphene100 GHz[136]
    Ring-cavity EDFL with microfiber knot filterLPE-prepared graphene106.7 GHz[137]
    Ring-cavity YDFL with microfiber knot filterLPE-prepared graphene162 GHz[137]
    418th-harmonic mode-locked ring-cavity EDFLLPE-prepared TIBi2Te32.04 GHz[138]
    170th-harmonic mode-locked ring-cavity EDFLPLD-prepared TIBi2Te32.95 GHz[77]
    22  cm short linear-cavity EDFLLPE-prepared TMDMoS2463 MHz[139]
    212th-harmonic mode-locked ring-cavity EDFLLPE-prepared TMDMoSe23.27 GHz[140]
    10th-harmonic mode-locked ring-cavity HDFLLPE-prepared BP290 MHz[141]
    Table 3. UFLs Mode-Locked by 2D Materials with High Repetition Rates
    Laser ConfigurationSASNR at frepRF ResolutionRF SpanningRef.
    Ring-cavity EDFLLPE-prepared graphene87.4 dB10 Hz[120]
    Ring-cavity EDFLCVD-grown graphene70 dB0–10 GHz[144]
    Ring-cavity TDFLCVD-grown graphene75 dB33 Hz0–3.6 GHz[126]
    Ring-cavity EDFLPMS-deposited TIIn2Se390 dB30 Hz0–1.5 GHz[145]
    Ring-cavity EDFLPMS-deposited TMDMoTe293 dB10 Hz0–1 GHz[146]
    Ring-cavity TDFLPMS-deposited TISb2Te384 dB10 Hz0–1 GHz[147]
    Ring-cavity TDFLPMS-deposited TIWte295 dB10 Hz0–0.5 GHz[148]
    Ring-cavity EDFLCVD-grown TMDWSe296 dB20 Hz0–0.6 GHz[128]
    Table 4. Highly Stable UFLs Mode-Locked by 2D Materials
    Tian Jiang, Ke Yin, Cong Wang, Jie You, Hao Ouyang, Runlin Miao, Chenxi Zhang, Ke Wei, Han Li, Haitao Chen, Renyan Zhang, Xin Zheng, Zhongjie Xu, Xiangai Cheng, Han Zhang. Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect[J]. Photonics Research, 2020, 8(1): 78
    Download Citation