• Chinese Journal of Quantum Electronics
  • Vol. 39, Issue 1, 110 (2022)
Shiyao FU1、2、3、*, Lan HAI1、2、3, Rui SONG1、2、3, and Chunqing GAO1、2、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2022.01.007 Cite this Article
    FU Shiyao, HAI Lan, SONG Rui, GAO Chunqing. Representation and intra-cavity generation of vectorial vortex beams[J]. Chinese Journal of Quantum Electronics, 2022, 39(1): 110 Copy Citation Text show less
    References

    [1] Allen L, Beijersbergen M W, Spreeuw R J, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes [J]. Physical Review A, 1992, 45(11): 8185-8189.

    [2] Padgett M J. Orbital angular momentum 25 years on [J]. Optics Express, 2017, 25(10): 11265-11274.

    [3] Shen Y J, Wang X J, Xie Z W, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities [J]. Light: Science & Applications, 2019, 8: 90.

    [4] Forbes A. Structured light from lasers [J]. Laser & Photonics Reviews, 2019, 13(11): 1900140.

    [5] Forbes A. Oliveira M, Dennis M R. Structured light [J]. Nature Photonics, 2021, 15(4): 253-262.

    [6] Lazarev G, Chen P J, Strauss J, et al. Beyond the display: Phase-only liquid crystal on silicon devices and their applications in photonics [J]. Optics Express, 2019, 27(11): 16206-16249.

    [7] Ren Y X, Lu R D, Gong L. Tailoring light with a digital micromirror device [J]. Annalen Der Physik, 2015, 527(7/8): 447-470.

    [8] Turtaev S, Leite I T, Mitchell K J, et al. Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics [J]. Optics Express, 2017, 25(24): 29874-29884.

    [9] Rubano A, Cardano F, Piccirillo B, et al. Q-plate technology: A progress review [J]. Journal of the Optical Society of America B, 2019, 36(5): D70.

    [10] Marrucci L, Karimi E, Slussarenko S, et al. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications [J]. Journal of Optics, 2011, 13(6): 064001.

    [11] Cardano F, Marrucci L. Spin-orbit photonics [J]. Nature Photonics, 2015, 9(12): 776-778.

    [12] Bliokh K Y, Rodríguez-Fortuo F J, Nori F, et al. Spin-orbit interactions of light [J]. Nature Photonics, 2015, 9(12): 796-808.

    [13] Gori F, Guattari G, Padovani C. Bessel-Gauss beams [J]. Optics Communications, 1987, 64(6): 491-495.

    [14] Efremidis N K, Chen Z G, Segev M, et al. Airy beams and accelerating waves: An overview of recent advances [J]. Optica, 2019, 6(5): 686-701.

    [15] Zhuang J L, Zhang L P, Deng D M. Tight-focusing properties of linearly polarized circular Airy Gaussian vortex beam [J]. Optics Letters, 2020, 45(2): 296-299.

    [16] Zhan Q W. Cylindrical vector beams: From mathematical concepts to applications [J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.

    [17] Shen Y J, Yang X L, Naidoo D, et al. Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser [J]. Optica, 2020, 7(7): 820-831.

    [18] Wang Z Y, Shen Y J, Naidoo D, et al. Astigmatic hybrid SU(2) vector vortex beams: Towards versatile structures in longitudinally variant polarized optics [J]. Optics Express, 2021, 29(1): 315-329.

    [19] Padgett M, Bowman R. Tweezers with a twist [J]. Nature Photonics, 2011, 5(6): 343-348.

    [20] Li Y, Zhou L M, Zhao N. Anomalous motion of a particle levitated by Laguerre-Gaussian beams [J]. Optics Letters, 2021, 46(1): 106-109.

    [21] Yang Y J, Ren Y X, Chen M Z, et al. Optical trapping with structured light: A review [J]. Advanced Photonics, 2021: 034001.

    [22] Lavery M P, Speirits F C, Barnett S M, et al. Detection of a spinning object using light’s orbital angular momentum [J]. Science, 2013, 341(6145): 537-540.

    [23] Lavery M P, Barnett S C, Speirits F C, et al. Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body [J]. Optica, 2014, 1(1): 1-3.

    [24] Fu S, Wang T, Zhang Z, et al. Non-diffractive Bessel-Gauss beams for the detection of rotating object free of obstructions [J]. Optics Express, 2017, 25(17): 20098-20108.

    [25] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing [J]. Nature Photonics, 2012, 6(7): 488-496.

    [26] Fu S Y, Zhai Y W, Zhou H, et al. Demonstration of free-space one-to-many multicasting link from orbital angular momentum encoding [J]. Optics Letters, 2019, 44(19): 4753-4756.

    [27] Fu S, Zhai Y, Zhou H, et al. Experimental demonstration of free-space multi-state orbital angular momentum shift keying [J]. Optics Express, 2019, 27(23): 33111-33119.

    [28] Bernet S, Jesacher A, Fürhapter S, et al. Quantitative imaging of complex samples by spiral phase contrast microscopy [J]. Optics Express, 2006, 14(9): 3792-3805.

    [29] Andrews D. Structured Light and Its Applications: An Introduction to Phase-structured Beams and Nanoscale Optical Forces [M]. Waltham: Academic Press, 2008.

    [30] Yi X N, Liu Y C, Ling X H, et al. Hybrid-order Poincaré sphere [J]. Physical Review A, 2015, 91(2): 023801.

    [31] Huang Y W, Rubin N A, Ambrosio A, et al. Versatile total angular momentum generation using cascaded J-plates [J]. Optics Express, 2019, 27(5): 7469-7484.

    [32] Milione G, Sztul H I, Nolan D A, et al. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light [J]. Physical Review Letters, 2011, 107(5): 053601.

    [33] Poincaré H. Theorie mathematique de la Lomiere [M]. Paris: Gauthiers-Villars, 1892.

    [34] Ren Z C, Rong L J, Li S M, et al. Generalized Poincaré sphere [J]. Optics Express, 2015, 23(20): 26586-26595.

    [35] Shen Y J, Wang Z Y, Fu X, et al. SU(2) Poincaré sphere: A generalized representation for multidimensional structured light [J]. Physical Review A, 2020, 102(3): 031501.

    [36] Fu S Y, Hai L, Song R, et al. Representation of total angular momentum states of beams through a four-parameter notation [J]. New Journal of Physics, 2021, 23(8): 083015.

    [37] Ngcobo S, Litvin I, Burger L, et al. A digital laser for on-demand laser modes [J]. Nature Communications, 2013, 4: 2289.

    [38] Naidoo D, Roux F S, Dudley A, et al. Controlled generation of higher-order Poincaré sphere beams from a laser [J]. Nature Photonics, 2016, 10(5): 327-332.

    [39] Qiao Z, Xie G Q, Wu Y H, et al. Generating high-charge optical vortices directly from laser up to 288th order [J]. Laser & Photonics Reviews, 2018, 12(8): 1800019.

    [40] Sharma V, Kumar S C, Aadhi A, et al. Tunable vector-vortex beam optical parametric oscillator [J]. Scientific Reports, 2019, 9: 9578.

    [41] Fan J T, Xiao N, Zhao J, et al. Controlled generation of wavelength-tunable higher order Poincaré sphere beams from a femtosecond optical parametric oscillator [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26(6): 8800205.

    [42] Fan J T, Zhao J, Shi L P, et al. Two-channel, dual-beam-mode, wavelength-tunable femtosecond optical parametric oscillator[J]. Advanced Photonics, 2020, 2(4): 045001.

    [43] Sroor H, Huang Y W, Sephton B, et al. High-purity orbital angular momentum states from a visible metasurface laser [J]. Nature Photonics, 2020, 14(8): 498-503.

    [44] Song R, Gao C Q, Zhou H, et al. Resonantly pumped Er:YAG vector laser with selective polarization states at 1.6 μm [J]. Optics Letters, 2020, 45(16): 4626-4629.

    [45] Song R, Liu X T, Fu S Y, et al. Simultaneous tailoring of longitudinal and transverse mode inside an Er:YAG laser [J]. Chinese Optics Letters, 2021, 19(11): 111404.

    FU Shiyao, HAI Lan, SONG Rui, GAO Chunqing. Representation and intra-cavity generation of vectorial vortex beams[J]. Chinese Journal of Quantum Electronics, 2022, 39(1): 110
    Download Citation