• Photonics Research
  • Vol. 9, Issue 6, 1144 (2021)
Congping Chen1、2、3、†, Zhongya Qin1、2、3、†, Sicong He1、2、3, Shaojun Liu4、5, Shun-Fat Lau2、6、7, Wanjie Wu1、2、3, Dan Zhu4、5, Nancy Y. Ip2、6、7, and Jianan Y. Qu1、2、3、*
Author Affiliations
  • 1Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
  • 2State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
  • 3Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
  • 4Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
  • 5MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
  • 6Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
  • 7Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
  • show less
    DOI: 10.1364/PRJ.420220 Cite this Article Set citation alerts
    Congping Chen, Zhongya Qin, Sicong He, Shaojun Liu, Shun-Fat Lau, Wanjie Wu, Dan Zhu, Nancy Y. Ip, Jianan Y. Qu. High-resolution two-photon transcranial imaging of brain using direct wavefront sensing[J]. Photonics Research, 2021, 9(6): 1144 Copy Citation Text show less
    References

    [1] F. Helmchen, W. Denk. Deep tissue two-photon microscopy. Nat. Methods, 2, 932-940(2005).

    [2] K. Svoboda, R. Yasuda. Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron, 50, 823-839(2006).

    [3] A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, L. Wilbrecht. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat. Protoc., 4, 1128-1144(2009).

    [4] G. Yang, F. Pan, C. N. Parkhurst, J. Grutzendler, W.-B. Gan. Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nat. Protoc., 5, 201-208(2010).

    [5] H.-T. Xu, F. Pan, G. Yang, W.-B. Gan. Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat. Neurosci., 10, 549-551(2007).

    [6] R. D. Dorand, D. S. Barkauskas, T. A. Evans, A. Petrosiute, A. Y. Huang. Comparison of intravital thinned skull and cranial window approaches to study CNS immunobiology in the mouse cortex. Intravital, 3, e29728(2014).

    [7] C. Chen, Z. Liang, B. Zhou, X. Li, C. Lui, N. Y. Ip, J. Y. Qu. In vivo near-infrared two-photon imaging of amyloid plaques in deep brain of Alzheimer’s disease mouse model. ACS Chem. Neurosci., 9, 3128-3136(2018).

    [8] Y.-J. Zhao, T.-T. Yu, C. Zhang, Z. Li, Q.-M. Luo, T.-H. Xu, D. Zhu. Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution. Light Sci. Appl., 7, 17153(2018).

    [9] C. Zhang, W. Feng, Y. Zhao, T. Yu, P. Li, T. Xu, Q. Luo, D. Zhu. A large, switchable optical clearing skull window for cerebrovascular imaging. Theranostics, 8, 2696-2708(2018).

    [10] Y. Chen, S. Liu, H. Liu, S. Tong, H. Tang, C. Zhang, S. Yan, H. Li, G. Yang, D. Zhu, K. Wang, P. Wang. Coherent Raman scattering unravelling mechanisms underlying skull optical clearing for through-skull brain imaging. Anal. Chem., 91, 9371-9375(2019).

    [11] M. J. Booth. Adaptive optical microscopy: the ongoing quest for a perfect image. Light Sci. Appl., 3, e165(2014).

    [12] N. Ji. Adaptive optical fluorescence microscopy. Nat. Methods, 14, 374-380(2017).

    [13] R. Aviles-Espinosa, J. Andilla, R. Porcar-Guezenec, O. E. Olarte, M. Nieto, X. Levecq, D. Artigas, P. Loza-Alvarez. Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy. Biomed. Opt. Express, 2, 3135-3149(2011).

    [14] K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, E. Betzig. Rapid adaptive optical recovery of optimal resolution over large volumes. Nat. Methods, 11, 625-628(2014).

    [15] K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, N. Ji. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue. Nat. Commun., 6, 7276(2015).

    [16] R. Liu, Z. Li, J. S. Marvin, D. Kleinfeld. Direct wavefront sensing enables functional imaging of infragranular axons and spines. Nat. Methods, 16, 615-618(2019).

    [17] Z. Qin, S. He, C. Yang, J. S.-Y. Yung, C. Chen, C. K.-S. Leung, K. Liu, J. Y. Qu. Adaptive optics two-photon microscopy enables near-diffraction-limited and functional retinal imaging in vivo. Light Sci. Appl., 9, 79(2020).

    [18] D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, T. Wilson. Image-based adaptive optics for two-photon microscopy. Opt. Lett., 34, 2495-2497(2009).

    [19] N. Ji, D. E. Milkie, E. Betzig. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat. Methods, 7, 141-147(2010).

    [20] J. Tang, R. N. Germain, M. Cui. Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique. Proc. Natl. Acad. Sci. USA, 109, 8434-8439(2012).

    [21] https://doi.org/10.6084/m9.figshare.14658870.v1. https://doi.org/10.6084/m9.figshare.14658870.v1

    [22] M. Gu, T. Tannous, J. R. Sheppard. Effect of an annular pupil on confocal imaging through highly scattering media. Opt. Lett., 21, 312-314(1996).

    [23] E. Beaurepaire, J. Mertz. Epifluorescence collection in two-photon microscopy. Appl. Opt., 41, 5376-5382(2002).

    [24] M. Kondo, K. Kobayashi, M. Ohkura, J. Nakai, M. Matsuzaki. Two-photon calcium imaging of the medial prefrontal cortex and hippocampus without cortical invasion. eLife, 6, e26839(2017).

    [25] N. Ji, T. R. Sato, E. Betzig. Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex. Proc. Natl. Acad. Sci. USA, 109, 22-27(2012).

    [26] W. Göbel, F. Helmchen. In vivo calcium imaging of neural network function. Physiology, 22, 358-365(2007).

    [27] P. Theer, W. Denk. On the fundamental imaging-depth limit in two-photon microscopy. J. Opt. Soc. Am. A, 23, 3139-3149(2006).

    [28] C. N. Parkhurst, W.-B. Gan. Microglia dynamics and function in the CNS. Curr. Opin. Neurobiol., 20, 595-600(2010).

    [29] C. Madry, V. Kyrargyri, I. L. Arancibia-Cárcamo, R. Jolivet, S. Kohsaka, R. M. Bryan, D. Attwell. Microglial ramification, surveillance, and interleukin-1β release are regulated by the two-pore domain K+ channel THIK-1. Neuron, 97, 299-312(2018).

    [30] R. A. Armstrong. Original article Laminar distribution of β-amyloid (Aβ) peptide deposits in the frontal lobe in familial and sporadic Alzheimer’s disease. Folia Neuropathol., 1, 15-23(2015).

    [31] L. Sacconi, R. P. O’Connor, A. Jasaitis, A. Masi, M. Buffelli, F. S. Pavone. In vivo multiphoton nanosurgery on cortical neurons. J. Biomed. Opt., 12, 050502(2007).

    [32] A. J. Canty, L. Huang, J. S. Jackson, G. E. Little, G. Knott, B. Maco, V. De Paola. In-vivo single neuron axotomy triggers axon regeneration to restore synaptic density in specific cortical circuits. Nat. Commun., 4, 2038(2013).

    [33] N. Nishimura, C. B. Schaffer, B. Friedman, P. S. Tsai, P. D. Lyden, D. Kleinfeld. Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke. Nat. Methods, 3, 99-108(2006).

    [34] A. Y. Shih, P. Blinder, P. S. Tsai, B. Friedman, G. Stanley, P. D. Lyden, D. Kleinfeld. The smallest stroke: occlusion of one penetrating vessel leads to infarction and a cognitive deficit. Nat. Neurosci., 16, 55-63(2013).

    [35] T. L. Roth, D. Nayak, T. Atanasijevic, A. P. Koretsky, L. L. Latour, D. B. McGavern. Transcranial amelioration of inflammation and cell death after brain injury. Nature, 505, 223-228(2014).

    [36] T. Wang, D. G. Ouzounov, C. Wu, N. G. Horton, B. Zhang, C.-H. Wu, Y. Zhang, M. J. Schnitzer, C. Xu. Three-photon imaging of mouse brain structure and function through the intact skull. Nat. Methods, 15, 789-792(2018).

    [37] Y. Wang, M. Chen, N. Alifu, S. Li, W. Qin, A. Qin, B. Z. Tang, J. Qian. Aggregation-induced emission luminogen with deep-red emission for through-skull three-photon fluorescence imaging of mouse. ACS Nano, 11, 10452-10461(2017).

    [38] J.-H. Park, L. Kong, Y. Zhou, M. Cui. Large-field-of-view imaging by multi-pupil adaptive optics. Nat. Methods, 14, 581-583(2017).

    [39] D. M. Chow, D. Sinefeld, K. E. Kolkman, D. G. Ouzounov, N. Akbari, R. Tatarsky, A. Bass, C. Xu, J. R. Fetcho. Deep three-photon imaging of the brain in intact adult zebrafish. Nat. Methods, 17, 605-608(2020).

    [40] O. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F. B. Jaworski, J. A. Carr, C. J. Rowlands, M. W. B. Wilson, O. Chen, H. Wei, G. W. Hwang, D. M. Montana, I. Coropceanu, O. B. Achorn, J. Kloepper, J. Heeren, P. T. C. So, D. Fukumura, K. F. Jensen, R. K. Jain, M. G. Bawendi. Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat. Biomed. Eng., 1, 0056(2017).

    [41] S. Wang, J. Liu, G. Feng, L. G. Ng, B. Liu. NIR-II excitable conjugated polymer dots with bright NIR-I emission for deep in vivo two-photon brain imaging through intact skull. Adv. Funct. Mater., 29, 1808365(2019).

    [42] P. M. Prieto, F. Vargas-Martín, S. Goelz, P. Artal. Analysis of the performance of the Hartmann–Shack sensor in the human eye. J. Opt. Soc. Am. A, 17, 1388-1398(2000).

    [43] S. L. Jacques. Optical properties of biological tissues: a review. Phys. Med. Biol., 58, R37-R61(2013).

    [44] G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, J. R. Sanes. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron, 28, 41-51(2000).

    [45] S. Jung, J. Aliberti, P. Graemmel, M. J. Sunshine, G. W. Kreutzberg, A. Sher, D. R. Littman. Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell Biol., 20, 4106-4114(2000).

    [46] Q. Sun, Z. Qin, W. Wu, Y. Lin, C. Chen, S. He, X. Li, Z. Wu, Y. Luo, J. Y. Qu. In vivo imaging-guided microsurgery based on femtosecond laser produced new fluorescent compounds in biological tissues. Biomed. Opt. Express, 9, 581-590(2018).

    [47] Z. Qin, Q. Sun, Y. Lin, S. He, X. Li, C. Chen, W. Wu, Y. Luo, J. Y. Qu. New fluorescent compounds produced by femtosecond laser surgery in biological tissues: the mechanisms. Biomed. Opt. Express, 9, 3373-3390(2018).

    [48] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona. Fiji: an open-source platform for biological-image analysis. Nat. Methods, 9, 676-682(2012).

    [49] P. Thévenaz, U. E. Ruttimann, M. Unser. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process., 7, 27-41(1998).

    [50] P. Kaifosh, M. Lovett-Barron, G. F. Turi, T. R. Reardon, A. Losonczy. Septo-hippocampal GABAergic signaling across multiple modalities in awake mice. Nat. Neurosci., 16, 1182-1184(2013).

    [51] S. Preibisch, S. Saalfeld, P. Tomancak. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics, 25, 1463-1465(2009).

    Congping Chen, Zhongya Qin, Sicong He, Shaojun Liu, Shun-Fat Lau, Wanjie Wu, Dan Zhu, Nancy Y. Ip, Jianan Y. Qu. High-resolution two-photon transcranial imaging of brain using direct wavefront sensing[J]. Photonics Research, 2021, 9(6): 1144
    Download Citation