• Laser & Optoelectronics Progress
  • Vol. 55, Issue 2, 021408 (2018)
Shuang He, Hui Chen*, Yong Chen, Lidong Xu, and Xiaoli Che
Author Affiliations
  • School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
  • show less
    DOI: 10.3788/LOP55.021408 Cite this Article Set citation alerts
    Shuang He, Hui Chen, Yong Chen, Lidong Xu, Xiaoli Che. Effects of Laser Power on Droplet Transfer Behaviour in Laser-MAG Hybrid Welding[J]. Laser & Optoelectronics Progress, 2018, 55(2): 021408 Copy Citation Text show less
    Schematic of welding equipments
    Fig. 1. Schematic of welding equipments
    Schematic of force acting on droplets. (a) MAG welding; (b) laser-MAG hybrid welding
    Fig. 2. Schematic of force acting on droplets. (a) MAG welding; (b) laser-MAG hybrid welding
    fz versus θ
    Fig. 3. fz versus θ
    Droplet images in short-circuiting transfer mode. (a) MAG welding; (b) laser-MAG hybrid welding, P=1000 W; (c) laser-MAG hybrid welding, P=2000 W; (d) laser-MAG hybrid welding, P=3000 W; (e) laser-MAG hybrid welding, P=4000 W
    Fig. 4. Droplet images in short-circuiting transfer mode. (a) MAG welding; (b) laser-MAG hybrid welding, P=1000 W; (c) laser-MAG hybrid welding, P=2000 W; (d) laser-MAG hybrid welding, P=3000 W; (e) laser-MAG hybrid welding, P=4000 W
    Transition period of droplets versus laser power
    Fig. 5. Transition period of droplets versus laser power
    Voltage waveforms under different laser powers. (a) Short-circuiting transfer; (b) globule transfer; (c) spray transfer
    Fig. 6. Voltage waveforms under different laser powers. (a) Short-circuiting transfer; (b) globule transfer; (c) spray transfer
    Droplet images in globule transfer mode. (a) MAG welding; (b) laser-MAG hybrid welding, P=1000 W; (c) laser-MAG hybrid welding, P=2000 W; (d) laser-MAG hybrid welding, P=3000 W; (e) laser-MAG hybrid welding, P=4000 W
    Fig. 7. Droplet images in globule transfer mode. (a) MAG welding; (b) laser-MAG hybrid welding, P=1000 W; (c) laser-MAG hybrid welding, P=2000 W; (d) laser-MAG hybrid welding, P=3000 W; (e) laser-MAG hybrid welding, P=4000 W
    Droplet images in spray transfer mode. (a) MAG welding; (b) laser-MAG hybrid welding, P=1000 W; (c) laser-MAG hybrid welding, P=2000 W; (d) laser-MAG hybrid welding, P=3000 W
    Fig. 8. Droplet images in spray transfer mode. (a) MAG welding; (b) laser-MAG hybrid welding, P=1000 W; (c) laser-MAG hybrid welding, P=2000 W; (d) laser-MAG hybrid welding, P=3000 W
    (a) Relationship between weld penetration and laser power; (b) relationship between weld width and laser power
    Fig. 9. (a) Relationship between weld penetration and laser power; (b) relationship between weld width and laser power
    Weld cross sections under different laser powers. (a) Short-circuiting transfer; (b) globule transfer; (c) spray transfer
    Fig. 10. Weld cross sections under different laser powers. (a) Short-circuiting transfer; (b) globule transfer; (c) spray transfer
    MaterialCSiMnPSCrNiMoCuFe
    Base metal0.02280.5381.310.0268<0.00117.277.330.05180.201Bal.
    Wire0.060.4551.820.030.0319.510.0≤0.75≤0.75Bal.
    Table 1. Chemical compositions of base metal and wire (mass fraction, %)
    Welding parameterValue
    Welding speed /(m·min-1)1.0
    Laser power /kW1, 2, 3, 4
    Arc voltage /V24, 27, 32
    Defocusing /mm0
    Laser-arc distance /mm2
    Extension length /mm15
    Table 2. Process parameters in welding experiment
    Shuang He, Hui Chen, Yong Chen, Lidong Xu, Xiaoli Che. Effects of Laser Power on Droplet Transfer Behaviour in Laser-MAG Hybrid Welding[J]. Laser & Optoelectronics Progress, 2018, 55(2): 021408
    Download Citation