• Photonics Research
  • Vol. 12, Issue 9, 2047 (2024)
Shuo Yan1,†, Yiwei Sun1,†, Fengchao Ni1,†, Zhanwei Liu1..., Haigang Liu1,4,* and Xianfeng Chen1,2,3,5,*|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
  • 3Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
  • 4e-mail: liuhaigang@sjtu.edu.cn
  • 5e-mail: xfchen@sjtu.edu.cn
  • show less
    DOI: 10.1364/PRJ.523728 Cite this Article Set citation alerts
    Shuo Yan, Yiwei Sun, Fengchao Ni, Zhanwei Liu, Haigang Liu, Xianfeng Chen, "Image reconstruction through a nonlinear scattering medium via deep learning," Photonics Res. 12, 2047 (2024) Copy Citation Text show less
    References

    [1] R. Horstmeyer, H. Ruan, C. Yang. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photonics, 9, 563-571(2015).

    [2] R. Cao, F. de Goumoens, B. Blochet. High-resolution non-line-of-sight imaging employing active focusing. Nat. Photonics, 16, 462-468(2022).

    [3] M. Mounaix, D. Andreoli, H. Defienne. Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix. Phys. Rev. Lett., 116, 253901(2016).

    [4] I. M. Vellekoop, A. P. Mosk. Focusing coherent light through opaque strongly scattering media. Opt. Lett., 32, 2309-2311(2007).

    [5] J. W. Goodman. Some fundamental properties of speckle. J. Opt. Soc. Am., 66, 1145-1150(1976).

    [6] A. Nwaneshiudu, C. Kuschal, F. H. Sakamoto. Introduction to confocal microscopy. J. Invest. Derma., 132, 1-5(2012).

    [7] A. G. Podoleanu. Optical coherence tomography. J. Micro., 247, 209-219(2012).

    [8] Y. Hoshi, Y. Yamada. Overview of diffuse optical tomography and its clinical applications. J. Biomed. Opt., 21, 091312(2016).

    [9] J. Bertolotti, E. G. Van Putten, C. Blum. Non-invasive imaging through opaque scattering layers. Nature, 491, 232-234(2012).

    [10] O. Katz, P. Heidmann, M. Fink. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics, 8, 784-790(2014).

    [11] I. M. Vellekoop, A. P. Mosk. Universal optimal transmission of light through disordered materials. Phys. Rev. Lett., 101, 120601(2008).

    [12] O. Tzang, E. Niv, S. Singh. Wavefront shaping in complex media with a 350 kHz modulator via a 1D-to-2D transform. Nat. Photonics, 13, 788-793(2019).

    [13] J. H. Park, Z. Yu, K. Lee. Perspective: wavefront shaping techniques for controlling multiple light scattering in biological tissues: toward in vivo applications. APL Photon., 3, 100901(2018).

    [14] W. L. Vos, A. Lagendijk, A. P. Mosk. Light propagation and emission in complex photonic media. arXiv(2015).

    [15] S. Liu, K. Switkowski, C. Xu. Nonlinear wavefront shaping with optically induced three-dimensional nonlinear photonic crystals. Nat. Commun., 10, 3208(2019).

    [16] S. Turtaev, I. T. Leite, T. Altwegg-Boussac. High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging. Light Sci. Appl., 7, 92(2018).

    [17] I. N. Papadopoulos, S. Farahi, C. Moser. Focusing and scanning light through a multimode optical fiber using digital phase conjugation. Opt. Express, 20, 10583-10590(2012).

    [18] O. Tzang, A. M. Caravaca-Aguirre, K. Wagner. Adaptive wavefront shaping for controlling nonlinear multimode interactions in optical fibres. Nat. Photonics, 12, 368-374(2018).

    [19] S. M. Popoff, G. Lerosey, R. Carminati. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett., 104, 100601(2010).

    [20] S. M. Popoff, G. Lerosey, M. Fink. Controlling light through optical disordered media: transmission matrix approach. New J. Phys., 13, 123021(2011).

    [21] S. Popoff, G. Lerosey, M. Fink. Image transmission through an opaque material. Nat. Commun., 1, 81(2010).

    [22] K. Lee, Y. Park. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor. Nat. Commun., 7, 13359(2016).

    [23] A. P. Mosk, A. Lagendijk, G. Lerosey. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics, 6, 283-292(2012).

    [24] P. T. So, C. Y. Dong, B. R. Masters. Two-photon excitation fluorescence microscopy. Annu. Rev. Bio. Eng., 2, 399-429(2000).

    [25] P. J. Campagnola, C. Y. Dong. Second harmonic generation microscopy: principles and applications to disease diagnosis. Laser Photon. Rev., 5, 13-26(2011).

    [26] C. L. Evans, X. S. Xie. Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu. Rev. Anal. Chem., 1, 883-909(2008).

    [27] J. D. Thomas, D. N. Rubin. Tissue harmonic imaging: why does it work?. J. Am. Soc. Echo, 11, 803-808(1998).

    [28] S. Liu, C. L. Guo, J. T. Sheridan. A review of optical image encryption techniques. Opt. Laser Technol., 57, 327-342(2014).

    [29] H. W. Ruan, J. Xu, C. H. E. Yang. Optical information transmission through complex scattering media with optical-channel-based intensity streaming. Nat. Commun., 12, 2411(2021).

    [30] J. Hou, G. Situ. Image encryption using spatial nonlinear optics. eLight, 2, 3(2022).

    [31] F. Ni, H. Liu, Y. Zheng. Nonlinear harmonic wave manipulation in nonlinear scattering medium via scattering-matrix method. Adv. Photon., 5, 046010(2023).

    [32] J. Moon, Y. Cho, S. Kang. Measuring the scattering tensor of a disordered nonlinear medium. Nat. Phys., 19, 1709-1718(2023).

    [33] Y. L. Cun, Y. Bengio, G. Hinton. Deep learning. Nature, 521, 436-444(2015).

    [34] Y. Li, Y. Xue, L. Tian. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media. Optica, 5, 1181-1190(2018).

    [35] Y. Rivenson, Z. Göröcs, H. Günaydin. Deep learning microscopy. Optica, 4, 1437-1443(2017).

    [36] H. Wang, Y. Rivenson, Y. Jin. Deep learning achieves super-resolution in fluorescence microscopy. BioRxiv(2018).

    [37] Y. Rivenson, Y. Zhang, H. Günaydın. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci. Appl., 7, 17141(2018).

    [38] A. Sinha, J. Lee, S. Li. Lensless computational imaging through deep learning. Optica, 4, 1117-1125(2017).

    [39] Z. Liu, S. Yan, H. Liu. Superhigh-resolution recognition of optical vortex modes assisted by a deep-learning method. Phys. Rev. Lett., 123, 183902(2019).

    [40] K. Hornik, M. Stinchcombe, H. White. Multilayer feedforward networks are universal approximators. Neural Netw., 2, 359-366(1989).

    [41] K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural Netw., 4, 251-257(1991).

    [42] S. Zhu, E. Guo, J. Gu. Imaging through unknown scattering media based on physics-informed learning. Photon. Res., 9, B210-B219(2021).

    [43] S. Huang, J. Wang, D. Wu. Projecting colorful images through scattering media via deep learning. Opt. Express, 31, 36745-36753(2023).

    [44] B. Lin, X. Fan, D. Li. High-performance polarization imaging reconstruction in scattering system under natural light conditions with an improved U-Net. Photonics, 10, 204(2023).

    [45] B. Lin, X. Fan, P. Peng. Dynamic polarization fusion network (DPFN) for imaging in different scattering systems. Opt. Express, 32, 511-525(2024).

    [46] B. Lusch, J. N. Kutz, S. L. Brunton. Deep learning for universal linear embeddings of nonlinear dynamics. Nat. Commun., 9, 4950(2018).

    [47] O. Ronneberger, P. Fischer, T. Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation(2015).

    [48] G. Litjens, T. Kooi, B. E. Bejnordi. A survey on deep learning in medical image analysis. Med. Image Anal., 42, 60-88(2017).

    [49] T. Tong, G. Li, X. Liu. Image super-resolution using dense skip connections. Proceedings of the IEEE International Conference on Computer Vision, 4799-4807(2017).

    [50] Z. Wang, A. C. Bovik, H. R. Sheikh. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process., 13, 600-612(2004).

    [51] P. H. Kaye. Spatial light-scattering analysis as a means of characterizing and classifying non-spherical particles. Meas. Sci. Technol., 9, 141(1998).

    [52] S. Yan, Y. Sun, F. Ni. Dataset 1(2024).

    [53] S. Yan, Y. Sun, F. Ni. Code 1(2024).

    [54] S. Popoff, G. Lerosey, M. Fink. Image transmission through an opaque material. Nat. Commun., 1, 81(2010).

    [55] A. Badon, D. Li, G. Lerosey. Smart optical coherence tomography for ultra-deep imaging through highly scattering media. Sci. Adv., 2, e1600370(2016).

    [56] M. Liao, W. He, D. Lu. Ciphertext-only attack on optical cryptosystem with spatially incoherent illumination: from the view of imaging through scattering medium. Sci. Rep., 7, 41789(2017).

    Shuo Yan, Yiwei Sun, Fengchao Ni, Zhanwei Liu, Haigang Liu, Xianfeng Chen, "Image reconstruction through a nonlinear scattering medium via deep learning," Photonics Res. 12, 2047 (2024)
    Download Citation