• Photonics Insights
  • Vol. 2, Issue 4, R09 (2023)
Qiang Zhang1、†, Zehao He2, Zhenwei Xie1, Qiaofeng Tan2, Yunlong Sheng3, Guofan Jin2, Liangcai Cao2、*, and Xiaocong Yuan1、4、*
Author Affiliations
  • 1Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, China
  • 2Department of Precision Instruments, Tsinghua University, Beijing, China
  • 3Center for Optics, Photonics and Lasers, Laval University, Quebec, Canada
  • 4Research Institute of Intelligent Sensing, Research Center for Humanoid Sensing,Zhejiang Lab, Hangzhou, China
  • show less
    DOI: 10.3788/PI.2023.R09 Cite this Article Set citation alerts
    Qiang Zhang, Zehao He, Zhenwei Xie, Qiaofeng Tan, Yunlong Sheng, Guofan Jin, Liangcai Cao, Xiaocong Yuan. Diffractive optical elements 75 years on: from micro-optics to metasurfaces[J]. Photonics Insights, 2023, 2(4): R09 Copy Citation Text show less
    References

    [1] N. I. Zheludev, Y. S. Kivshar. From metamaterials to metadevices. Nat. Mater., 11, 917(2012).

    [2] S. Jahani, Z. Jacob. All-dielectric metamaterials. Nat. Nanotechnol., 11, 23(2016).

    [3] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 13, 139(2014).

    [4] H.-T. Chen, A. J. Taylor, N. Yu. A review of metasurfaces: physics and applications. Rep. Prog. Phys., 79, 076401(2016).

    [5] J. Scheuer. Metasurfaces-based holography and beam shaping: engineering the phase profile of light. Nanophotonics, 6, 137(2017).

    [6] H. H. Hsiao, C. H. Chu, D. P. Tsai. Fundamentals and applications of metasurfaces. Small Methods, 1, 1600064(2017).

    [7] S. M. Kamali et al. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics, 7, 1041(2018).

    [8] A. Li, S. Singh, D. Sievenpiper. Metasurfaces and their applications. Nanophotonics, 7, 989(2018).

    [9] P. Cheben et al. Subwavelength integrated photonics. Nature, 560, 565(2018).

    [10] Q. He et al. High-efficiency metasurfaces: principles, realizations, and applications. Adv. Opt. Mater., 6, 1800415(2018).

    [11] S. Chang, X. Guo, X. Ni. Optical metasurfaces: progress and applications. Annu. Rev. Mater. Res., 48, 279(2018).

    [12] Q. Jiang, G. Jin, L. Cao. When metasurface meets hologram: principle and advances. Adv. Opt. Photonics, 11, 518(2019).

    [13] B. Sain, C. Meier, T. Zentgraf. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review. Adv. Photonics, 1, 1(2019).

    [14] A. Karabchevsky et al. On-chip nanophotonics and future challenges. Nanophotonics, 9, 3733(2020).

    [15] R. Zhao, L. Huang, Y. Wang. Recent advances in multi-dimensional metasurfaces holographic technologies. PhotoniX, 1, 1(2020).

    [16] W. T. Chen, A. Y. Zhu, F. Capasso. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater., 5, 604(2020).

    [17] X. Zhang et al. Terahertz surface plasmonic waves: a review. Adv. Photonics, 2, 014001(2020).

    [18] D. Wen et al. Light field on a chip: metasurface-based multicolor holograms. Adv. Photonics, 3, 024001(2021).

    [19] A. Overvig, A. Alù. Wavefront-selective Fano resonant metasurfaces. Adv. Photonics, 3, 026002(2021).

    [20] L. Wesemann, T. J. Davis, A. Roberts. Meta-optical and thin film devices for all-optical information processing. Appl. Phys. Rev., 8, 031309(2021).

    [21] R. Camacho-Morales et al. Infrared upconversion imaging in nonlinear metasurfaces. Adv. Photonics, 3, 036002(2021).

    [22] J. Hu et al. A review on metasurface: from principle to smart metadevices. Front. Phys., 8, 586087(2021).

    [23] N. A. Rubin, Z. Shi, F. Capasso. Polarization in diffractive optics and metasurfaces. Adv. Opt. Photonics, 13, 836(2021).

    [24] C.-W. Qiu et al. Quo vadis, metasurfaces?. Nano Lett., 21, 5461(2021).

    [25] N. Li et al. Directional control of light with nanoantennas. Adv. Opt. Mater., 9, 2001081(2021).

    [26] Q. Song et al. Vectorial metasurface holography. Appl. Phys. Rev., 9, 011311(2022).

    [27] H. Ahmed et al. Optical metasurfaces for generating and manipulating optical vortex beams. Nanophotonics, 11, 941(2022).

    [28] J. Kim et al. Tunable metasurfaces towards versatile metalenses and metaholograms: a review. Adv. Photonics, 4, 024001(2022).

    [29] K. Du et al. Optical metasurfaces towards multifunctionality and tunability. Nanophotonics, 11, 1761(2022).

    [30] G. Lee et al. The perspectives of broadband metasurfaces and photo-electric tweezer applications. Nanophotonics, 11, 1783(2022).

    [31] Q. Xu et al. Mechanically reprogrammable Pancharatnam–Berry metasurface for microwaves. Adv. Photonics, 4, 016002(2022).

    [32] J. C. Zhang et al. Electromagnetic wave tailoring: from one dimension to multiple dimensions. Electromagn. Sci., 1, 0030131(2023).

    [33] C. Wan, A. Chong, Q. Zhan. Optical spatiotemporal vortices. eLight, 3, 1(2023).

    [34] J. W. Goodman. Introduction to Fourier Optics, 3(2005).

    [35] T. Yatagai et al. Phase-only computer-generated hologram produced by an ion-exchange technique. Opt. Lett., 13, 952(1988).

    [36] G. Milewski, D. Engström, J. Bengtsson. Diffractive optical elements designed for highly precise far-field generation in the presence of artifacts typical for pixelated spatial light modulators. Appl. Opt., 46, 95(2007).

    [37] O. Bryngdahl, A. Lohmann. Single-sideband holography. J. Opt. Soc. Am., 58, 620(1968).

    [38] R. W. Meier. Twin-image elimination in holography using single-sideband waves. J. Opt. Soc. Am., 59, 358(1969).

    [39] X. Wang et al. Generalized single-sideband three-dimensional computer-generated holography. Opt. Express, 27, 2612(2019).

    [40] Z. He et al. Optimal quantization for amplitude and phase in computer-generated holography. Opt. Express, 29, 119(2021).

    [41] R. W. Cohn, M. Liang. Approximating fully complex spatial modulation with pseudorandom phase-only modulation. Appl. Opt., 33, 4406(1994).

    [42] W.-F. Hsu, S.-C. Lin. Iterative pixelwise approach applied to computer-generated holograms and diffractive optical elements. Appl. Opt., 57, A189(2018).

    [43] S. Weissbach, F. Wyrowski. Error diffusion procedure: theory and applications in optical signal processing. Appl. Opt., 31, 2518(1992).

    [44] H. Ma et al. Influence of limited random-phase of objects on the image quality of 3D holographic display. Opt. Commun., 385, 153(2017).

    [45] Y. Nagahama et al. Image quality improvement of random phase-free holograms by addressing the cause of ringing artifacts. Appl. Opt., 58, 2146(2019).

    [46] D. Mengu, E. Ulusoy, H. Urey. Non-iterative phase hologram computation for low speckle holographic image projection. Opt. Express, 24, 4462(2016).

    [47] M.-L. Cruz. Full image reconstruction with reduced speckle noise, from a partially illuminated Fresnel hologram, using a structured random phase. Appl. Opt., 58, 1917(2019).

    [48] R. W. Gerchberg. A practical algorithm for the determination of plane from image and diffraction pictures. Optica, 35, 237(1972).

    [49] B. Gu, G. Yang. Algorithm on the phase retrieval problems in optical and electronic microscopic systems. Prog. Phys., 8, 365(1988).

    [50] G. Yang et al. Iterative optimization approach for the design of diffractive phase elements simultaneously implementing several optical functions. J. Opt. Soc. Am. A, 11, 1632(1994).

    [51] W.-F. Hsu, C.-H. Lin. Optimal quantization method for uneven-phase diffractive optical elements by use of a modified iterative Fourier-transform algorithm. Appl. Opt., 44, 5802(2005).

    [52] X. Liu et al. Regional iterative optimization algorithm to reduce error caused by DOE binarization. Appl. Opt., 58, 7227(2019).

    [53] C.-Y. Chen et al. Full-color and less-speckled modified Gerchberg–Saxton algorithm computer-generated hologram floating in a dual-parabolic projection system. Chin. Opt. Lett., 13, 110901(2015).

    [54] R. Hauck, O. Bryngdahl. Computer-generated holograms with pulse-density modulation. J. Opt. Soc. Am. A, 1, 5(1984).

    [55] P. W. M. Tsang, T.-C. Poon. Novel method for converting digital Fresnel hologram to phase-only hologram based on bidirectional error diffusion. Opt. Express, 21, 23680(2013).

    [56] P. Tsang, A. Jiao, T.-C. Poon. Fast conversion of digital Fresnel hologram to phase-only hologram based on localized error diffusion and redistribution. Opt. Express, 22, 5060(2014).

    [57] A. W. Lohmann, D. Paris. Binary Fraunhofer holograms, generated by computer. Appl. Opt., 6, 1739(1967).

    [58] C.-K. Hsueh, A. A. Sawchuk. Computer-generated double-phase holograms. Appl. Opt., 17, 3874(1978).

    [59] D. Gabor. A new microscopic principle. Nature, 161, 777(1948).

    [60] A. Lohmann. On Moire fringes as Fourier test objects. Appl. Opt., 5, 669(1966).

    [61] B. R. Brown, A. W. Lohmann. Complex spatial filtering with binary masks. Appl. Opt., 5, 967(1966).

    [62] S.-C. Liu, D. Chu. Deep learning for hologram generation. Opt. Express, 29, 27373(2021).

    [63] J.-W. Kang et al. Deep-learning-based hologram generation using a generative model. Appl. Opt., 60, 7391(2021).

    [64] J. Burch. A computer algorithm for the synthesis of spatial frequency filters. Proc. IEEE, 55, 599(1967).

    [65] L. Lesem, P. Hirsch, J. Jordan. The kinoform: a new wavefront reconstruction device. IBM J. Res. Dev., 13, 150(1969).

    [66] W. B. Veldkamp, T. J. McHugh. Binary optics. Sci. Am., 266, 92(1992).

    [67] J. Leger et al. Coherent laser beam addition: an application of binary-optics technology. Linc. Lab. J., 1, 225(1988).

    [68] M. Collischon et al. Binary blazed reflection gratings. Appl. Opt., 33, 3572(1994).

    [69] H. F. Talbot. LXXVI. Facts relating to optical science. No. IV.. Philos. Mag., 9, 401(1836).

    [70] A. W. Lohmann, J. A. Thomas. Making an array illuminator based on the Talbot effect. Appl. Opt., 29, 4337(1990).

    [71] H. Dammann, K. Görtler. High-efficiency in-line multiple imaging by means of multiple phase holograms. Opt. Commun., 3, 312(1971).

    [72] J. Jahns et al. Dammann gratings for laser beam shaping. Opt. Eng., 28, 1267(1989).

    [73] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333(2011).

    [74] S. Sun et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater., 11, 426(2012).

    [75] S. Sun et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett., 12, 6223(2012).

    [76] C. Pfeiffer, A. Grbic. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett., 110, 197401(2013).

    [77] M. Decker et al. High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater., 3, 813(2015).

    [78] A. E. H. Love. I. The integration of the equations of propagation of electric waves. Philos. Trans. Royal Soc. Lond., 197, 1(1901).

    [79] M. Kang et al. Wave front engineering from an array of thin aperture antennas. Opt. Express, 20, 15882(2012).

    [80] N. Shitrit et al. Optical spin Hall effects in plasmonic chains. Nano Lett., 11, 2038(2011).

    [81] L. Huang et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett., 12, 5750(2012).

    [82] G. Zheng et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308(2015).

    [83] A. Arbabi et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 10, 937(2015).

    [84] L. Wu, J. Tao, G. Zheng. Controlling phase of arbitrary polarizations using both the geometric phase and the propagation phase. Physical Rev. B, 97, 245426(2018).

    [85] X. Liu et al. Underwater binocular meta-lens. ACS Photonics, 10, 2382(2023).

    [86] C. Chen et al. Metasurfaces with planar chiral meta-atoms for spin light manipulation. Nano Lett., 21, 1815(2021).

    [87] H. Kogelnik. Coupled wave theory for thick hologram gratings. Landmark Papers On Photorefractive Nonlinear Optics, 133(1995).

    [88] D. Brotherton-Ratcliffe et al. Comparative study of the accuracy of the PSM and Kogelnik models of diffraction in reflection and transmission holographic gratings. Opt. Express, 22, 32384(2014).

    [89] E. B. Grann, M. Moharam, D. A. Pommet. Artificial uniaxial and biaxial dielectrics with use of two-dimensional subwavelength binary gratings. J. Opt. Soc. Am. A, 11, 2695(1994).

    [90] M. Schmitz, R. Bräuer, O. Bryngdahl. Phase gratings with subwavelength structures. J. Opt. Soc. Am. A, 12, 2458(1995).

    [91] Z. Bomzon et al. Polarization Talbot self-imaging with computer-generated, space-variant subwavelength dielectric gratings. Appl. Opt., 41, 5218(2002).

    [92] Y. Gorodetski et al. Space-variant polarization manipulation for far-field polarimetry by use of subwavelength dielectric gratings. Opt. Lett., 30, 2245(2005).

    [93] P. T. Dang, J. Kim, J.-H. Lee. Negative dispersion of a form birefringence in subwavelength gratings. Opt. Express, 30, 18287(2022).

    [94] Z. Bomzon, V. Kleiner, E. Hasman. Computer-generated space-variant polarization elements with subwavelength metal stripes. Opt. Lett., 26, 33(2001).

    [95] C. Zhu et al. Design of a subwavelength all-metal grating for generating azimuthally polarized beams based on modified particle swarm optimization. Appl. Opt., 58, 4052(2019).

    [96] Y. Ye et al. Polarizing color filter based on a subwavelength metal–dielectric grating. Appl. Opt., 50, 1356(2011).

    [97] J. Hao et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys. Rev. Lett., 99, 063908(2007).

    [98] A. Pors, M. G. Nielsen, S. I. Bozhevolnyi. Broadband plasmonic half-wave plates in reflection. Opt. Lett., 38, 513(2013).

    [99] S.-C. Jiang et al. Controlling the polarization state of light with a dispersion-free metastructure. Phys. Rev. X, 4, 021026(2014).

    [100] J. Jia et al. Arbitrary cylindrical vector beam generation enabled by polarization-selective Gouy phase shifter. Photonics Res., 9, 1048(2021).

    [101] W. T. Chen et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett., 14, 225(2014).

    [102] D. Wen et al. Helicity multiplexed broadband metasurface holograms. Nat. Commun., 6, 8241(2015).

    [103] Z. Wang et al. Bifunctional manipulation of terahertz waves with high-efficiency transmissive dielectric metasurfaces. Adv. Sci., 10, 2205499(2023).

    [104] Y. Chen et al. Efficient meta-couplers squeezing propagating light into on-chip subwavelength devices in a controllable way. Nano Lett., 23, 3326(2023).

    [105] H.-X. Xu et al. Super-reflector enabled by non-interleaved spin-momentum-multiplexed metasurface. Light Sci. Appl., 12, 78(2023).

    [106] J. B. Mueller et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett., 118, 113901(2017).

    [107] L. Deng et al. Malus-metasurface-assisted polarization multiplexing. Light Sci. Appl., 9, 1(2020).

    [108] R. Ren et al. Non-orthogonal polarization multiplexed metasurfaces for tri-channel polychromatic image displays and information encryption. Nanophotonics, 10, 2903(2021).

    [109] P. Coullet, L. Gil, F. Rocca. Optical vortices. Opt. Commun., 73, 403(1989).

    [110] L. Allen et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185(1992).

    [111] H. Ren et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat. Nanotechnol., 15, 948(2020).

    [112] Y. Yang et al. Optical trapping with structured light: a review. Adv. Photonics, 3, 034001(2021).

    [113] Y. Shen et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 8, 1(2019).

    [114] H. Yang et al. A perspective on twisted light from on-chip devices. APL Photonics, 6, 110901(2021).

    [115] H. Ahmed et al. Optical metasurfaces for generating and manipulating optical vortex beams. Nanophotonics, 11, 941(2022).

    [116] K. Sueda et al. Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses. Opt. Express, 12, 3548(2004).

    [117] N. Heckenberg et al. Generation of optical phase singularities by computer-generated holograms. Opt. Lett., 17, 221(1992).

    [118] E. Karimi et al. Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates. Appl. Phys. Lett., 94, 231124(2009).

    [119] C.-W. Qiu, Y. Yang. Vortex generation reaches a new plateau. Science, 357, 645(2017).

    [120] R. C. Devlin et al. Arbitrary spin-to–orbital angular momentum conversion of light. Science, 358, 896(2017).

    [121] C. Huang et al. Ultrafast control of vortex microlasers. Science, 367, 1018(2020).

    [122] Z. Jin et al. Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum. eLight, 1, 1(2021).

    [123] G. Quaranta et al. Recent advances in resonant waveguide gratings. Laser Photonics Rev., 12, 1800017(2018).

    [124] S. Wang, R. Magnusson. Theory and applications of guided-mode resonance filters. Appl. Opt., 32, 2606(1993).

    [125] R. Magnusson, S. Wang. New principle for optical filters. Appl. Phys. Lett., 61, 1022(1992).

    [126] W. Klein. Theoretical efficiency of Bragg devices. Proc. IEEE, 54, 803(1966).

    [127] N. Nguyen-Huu et al. Realization of integrated polarizer and color filters based on subwavelength metallic gratings using a hybrid numerical scheme. Appl. Opt., 50, 415(2011).

    [128] H.-S. Lee et al. Color filter based on a subwavelength patterned metal grating. Opt. Express, 15, 15457(2007).

    [129] D. Peri, D. Ritter. Spatial filtering with volume gratings. Appl. Opt., 24, 1535(1985).

    [130] G. Ingersoll, J. Leger. Optimization of multi-grating volume holographic spectrum splitters for photovoltaic applications. Appl. Opt., 55, 5399(2016).

    [131] J. Chen et al. From volumetric to planar multiplexing: phase-coded metasurfaces without the Bragg effect. Adv. Mater., 2304386(2023).

    [132] M. Song et al. Colors with plasmonic nanostructures: a full-spectrum review. Appl. Phys. Rev., 6, 041308(2019).

    [133] K. Kumar et al. Printing colour at the optical diffraction limit. Nat. Nanotechnol., 7, 557(2012).

    [134] S. Sun et al. All-dielectric full-color printing with TiO2 metasurfaces. ACS Nano, 11, 4445(2017).

    [135] F. Zhang et al. Simultaneous full-color printing and holography enabled by centimeter-scale plasmonic metasurfaces. Adv. Sci., 7, 1903156(2020).

    [136] M. Miyata et al. Full-color-sorting metalenses for high-sensitivity image sensors. Optica, 8, 1596(2021).

    [137] B. H. Chen et al. GaN metalens for pixel-level full-color routing at visible light. Nano Lett., 17, 6345(2017).

    [138] N. Zhao, P. B. Catrysse, S. Fan. Perfect RGB-IR Color Routers for Sub-Wavelength Size CMOS Image Sensor Pixels. Adv. Photonics Res., 2, 2000048(2021).

    [139] E. Johlin. Nanophotonic color splitters for high-efficiency imaging. iScience, 24, 102268(2021).

    [140] P. Camayd-Muñoz et al. Multifunctional volumetric meta-optics for color and polarization image sensors. Optica, 7, 280(2020).

    [141] X. Zou et al. Pixel-level Bayer-type colour router based on metasurfaces. Nat. Commun., 13, 3288(2022).

    [142] J. Li et al. Single-layer bayer metasurface via inverse design. ACS Photonics, 9, 2607(2022).

    [143] Z. Xie et al. On-chip spin-controlled orbital angular momentum directional coupling. J. Phys. D: Appl. Phys., 51, 0140021(2017).

    [144] M. Kauranen, A. V. Zayats. Nonlinear plasmonics. Nat. Photonics, 6, 737(2012).

    [145] K. Konishi et al. Polarization-controlled circular second-harmonic generation from metal hole arrays with threefold rotational symmetry. Phys. Rev. Lett., 112, 135502(2014).

    [146] G. Li et al. Continuous control of the nonlinearity phase for harmonic generations. Nat. Mater., 14, 607(2015).

    [147] G. Grinblat. Nonlinear dielectric nanoantennas and metasurfaces: frequency conversion and wavefront control. ACS Photonics, 8, 3406(2021).

    [148] A. P. Anthur et al. Continuous wave second harmonic generation enabled by quasi-bound-states in the continuum on gallium phosphide metasurfaces. Nano Lett., 20, 8745(2020).

    [149] Z. Liu et al. High-Q quasibound states in the continuum for nonlinear metasurfaces. Phys. Rev. Lett., 123, 253901(2019).

    [150] T. Huang, B. Prasada. Considerations on the generation and processing of holograms by digital computers. MIT/RLE Q. Prog. Rep., 81, 199(1966).

    [151] H. M. Smith. Effect of emulsion thickness on the diffraction efficiency of amplitude holograms. J. Opt. Soc. Am., 62, 802(1972).

    [152] C. Chang, J. Bjorkstam. Amplitude hologram efficiencies with arbitrary modulation depth, based upon a realistic photographic film model. J. Opt. Soc. Am., 67, 1160(1977).

    [153] M. Landry, G. Phipps, C. Robertson. Measurement of diffraction efficiency, SNR, and resolution of single-and multiple-exposure amplitude and bleached holograms. Appl. Opt., 17, 1764(1978).

    [154] F. Wyrowski. Diffraction efficiency of analog and quantized digital amplitude holograms: analysis and manipulation. J. Opt. Soc. Am. A, 7, 383(1990).

    [155] F. Wyrowski. Diffractive optical elements: iterative calculation of quantized, blazed phase structures. J. Opt. Soc. Am. A, 7, 961(1990).

    [156] S. Weissbach, F. Wyrowski, O. Bryngdahl. Digital phase holograms: coding and quantization with an error diffusion concept. Opt. Commun., 72, 37(1989).

    [157] S. Sinzinger, V. Arrizón. High-efficiency detour-phase holograms. Opt. Lett., 22, 928(1997).

    [158] M. Makowski et al. Three-plane phase-only computer hologram generated with iterative Fresnel algorithm. Opt. Eng., 44, 125805(2005).

    [159] H. Bartelt, S. K. Case. High-efficiency hybrid computer-generated holograms. Appl. Opt., 21, 2886(1982).

    [160] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi. Optimization by simulated annealing. Science, 220, 671(1983).

    [161] U. Mahlab, J. Shamir, H. J. Caulfield. Genetic algorithm for optical pattern recognition. Opt. Lett., 16, 648(1991).

    [162] Y. Deng, D. Chu. Effect of masking phase-only holograms on the quality of reconstructed images. Appl. Opt., 55, 3158(2016).

    [163] A. J. Stevens, W. J. Hossack, S. Samus. Very-large-scale-integration fabrication technique for binary-phase gratings on sapphire. Appl. Opt., 34, 190(1995).

    [164] M. Ekberg et al. Proximity-compensated blazed transmission grating manufacture with direct-writing, electron-beam lithography. Appl. Opt., 33, 103(1994).

    [165] W. Daschnen et al. Cost-effective mass fabrication of multilevel diffractive optical elements by use of a single optical exposure with a gray-scale mask on high-energy beam-sensitive glass. Appl. Opt., 36, 4675(1997).

    [166] T. J. Suleski, D. C. O’Shea. Gray-scale masks for diffractive-optics fabrication: I. Commercial slide imagers. Appl. Opt., 34, 7507(1995).

    [167] A. She et al. Large area metalenses: design, characterization, and mass manufacturing. Opt. Express, 26, 1573(2018).

    [168] J.-S. Park et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Lett., 19, 8673(2019).

    [169] S. Colburn, A. Zhan, A. Majumdar. Varifocal zoom imaging with large area focal length adjustable metalenses. Optica, 5, 825(2018).

    [170] N. Li et al. Large-area pixelated metasurface beam deflector on a 12-inch glass wafer for random point generation. Nanophotonics, 8, 1855(2019).

    [171] Z.-B. Fan et al. Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging. Phys. Rev. Appl, 10, 014005(2018).

    [172] Z. Li et al. Inverse design enables large-scale high-performance meta-optics reshaping virtual reality. Nat. Commun., 13, 2409(2022).

    [173] A. Karvounis et al. Giant electro-optical effect through electrostriction in a nanomechanical metamaterial. Adv. Mater., 31, 1804801(2019).

    [174] J.-Y. Ou et al. An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nat. Nanotechnol., 8, 252(2013).

    [175] A. Xomalis et al. Fibre-optic metadevice for all-optical signal modulation based on coherent absorption. Nat. Commun., 9, 1(2018).

    [176] Q. Zhang et al. Electrogyration in metamaterials: chirality and polarization rotatory power that depend on applied electric field. Adv. Opt. Mater., 9, 2001826(2021).

    [177] X. Zhu et al. Plasmonic colour laser printing. Nat. Nanotechnol., 11, 325(2016).

    [178] P. R. Wiecha et al. Deep learning in nano-photonics: inverse design and beyond. Photonics Res., 9, B182(2021).

    [179] J. Kim et al. Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible. Nat. Mater., 22, 474(2023).

    [180] Z. Peng et al. Continuous roller nanoimprint: next generation lithography. Nanoscale, 15, 11403(2023).

    [181] J. C. Zhang et al. Nanoimprint meta-device for chiral imaging. Adv. Funct. Mater., 2306422(2023).

    [182] V. J. Einck et al. Scalable nanoimprint lithography process for manufacturing visible metasurfaces composed of high aspect ratio TiO2 meta-atoms. ACS Photonics, 8, 2400(2021).

    [183] H. Choi et al. Realization of high aspect ratio metalenses by facile nanoimprint lithography using water-soluble stamps. PhotoniX, 4, 1(2023).

    [184] G.-Y. Lee et al. Metasurface eyepiece for augmented reality. Nat. Commun., 9, 4562(2018).

    [185] K. Kim et al. Facile nanocasting of dielectric metasurfaces with sub-100 nm resolution. ACS Appl. Mater. Interfaces, 11, 26109(2019).

    [186] J. Kim et al. Metasurface holography reaching the highest efficiency limit in the visible via one-step nanoparticle-embedded-resin printing. Laser Photonics Rev., 16, 2200098(2022).

    [187] H. Kang et al. Emerging low-cost, large-scale photonic platforms with soft lithography and self-assembly. Photon. Insights, 2, R04(2023).

    [188] S. Boroviks et al. Multifunctional metamirror: polarization splitting and focusing. ACS Photonics, 5, 1648(2017).

    [189] C. Pfeiffer et al. Efficient light bending with isotropic metamaterial Huygens’ surfaces. Nano Lett., 14, 2491(2014).

    [190] Y. Yang et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett., 14, 1394(2014).

    [191] M. I. Shalaev et al. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett., 15, 6261(2015).

    [192] A. Forbes, M. de Oliveira, M. R. Dennis. Structured light. Nat. Photonics, 15, 253(2021).

    [193] D. Wang et al. Efficient generation of complex vectorial optical fields with metasurfaces. Light Sci. Appl., 10, 1(2021).

    [194] E. S. Harper et al. Inverse design of broadband highly reflective metasurfaces using neural networks. Phys. Rev. B, 101, 195104(2020).

    [195] T. Phan et al. High-efficiency, large-area, topology-optimized metasurfaces. Light Sci. Appl., 8, 1(2019).

    [196] D. W. Sweeney, G. E. Sommargren. Harmonic diffractive lenses. Appl. Opt., 34, 2469(1995).

    [197] M. Singh, J. Tervo, J. Turunen. Broadband beam shaping with harmonic diffractive optics. Opt. Express, 22, 22680(2014).

    [198] F. Zhou et al. Vector light field display based on an intertwined flat lens with large depth of focus. Optica, 9, 288(2022).

    [199] D. Faklis, G. M. Morris. Spectral properties of multiorder diffractive lenses. Appl. Opt., 34, 2462(1995).

    [200] J. Li, K. Feng. Optimization and analysis of multi-layer diffractive optical elements in visible waveband. Optica, 125, 3596(2014).

    [201] B. H. Kleemann, M. Seeßelberg, J. Ruoff. Design concepts for broadband high-efficiency DOEs. J. Eur. Opt. Soc. Rapid Publ., 3, 106(2008).

    [202] J. Choi, A. A. Cruz-Cabrera, A. Tanbakuchi. Spectral Diffraction Efficiency Characterization of Broadband Diffractive Optical Elements(2013).

    [203] G. F. Jin, Y. B. Yan, M. X. Wu. Binary Optics(1998).

    [204] T. Stone, N. George. Hybrid diffractive-refractive lenses and achromats. Appl. Opt., 27, 2960(1988).

    [205] M. Rossi, R. Kunz, H.-P. Herzig. Refractive and diffractive, properties of planar micro-optical elements. Appl. Opt., 34, 5996(1995).

    [206] X. Dun et al. Learned rotationally symmetric diffractive achromat for full-spectrum computational imaging. Optica, 7, 913(2020).

    [207] J.-B. Masson, G. Gallot. Terahertz achromatic quarter-wave plate. Opt. Lett., 31, 265(2006).

    [208] G. Kang et al. Achromatic phase retarder applied to MWIR & LWIR dual-band. Opt. Express, 18, 1695(2010).

    [209] X. Li et al. Dispersion engineering in metamaterials and metasurfaces. J. Phys. D: Appl. Phys., 51, 054002(2018).

    [210] Y. Hu et al. Asymptotic dispersion engineering for ultra-broadband meta-optics. Nat. Commun., 14, 6649(2023).

    [211] J. E. Fröch et al. Real time full-color imaging in a meta-optical fiber endoscope. eLight, 3, 1(2023).

    [212] H. Wang et al. Coloured vortex beams with incoherent white light illumination. Nat. Nanotechnol., 18, 264(2023).

    [213] R. J. Lin et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol., 14, 227(2019).

    [214] A. Y. Zhu et al. Compact aberration-corrected spectrometers in the visible using dispersion-tailored metasurfaces. Adv. Opt. Mater., 7, 1801144(2019).

    [215] F. Aieta et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science, 347, 1342(2015).

    [216] W. T. Chen et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 13, 220(2018).

    [217] S. Wang et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol., 13, 227(2018).

    [218] Z.-B. Fan et al. A broadband achromatic metalens array for integral imaging in the visible. Light Sci. Appl., 8, 1(2019).

    [219] Y. Wang et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat. Commun., 12, 1(2021).

    [220] Y. Ni et al. Metasurface for structured light projection over 120 field of view. Nano Lett., 20, 6719(2020).

    [221] Z. Li et al. Full-space cloud of random points with a scrambling metasurface. Light Sci. Appl., 7, 1(2018).

    [222] Z. Kong et al. Effective Fresnel diffraction field extension of diffractive optical elements with plane wave incidence. Appl. Opt., 59, 3427(2020).

    [223] W. Qu et al. Image magnification in lensless holographic projection using double-sampling Fresnel diffraction. Appl. Opt., 54, 10018(2015).

    [224] C. Chang et al. Image magnified lensless holographic projection by convergent spherical beam illumination. Chin. Opt. Lett., 16, 100901(2018).

    [225] H. Pang et al. Effective method for further magnifying the image in holographic projection under divergent light illumination. Appl. Opt., 58, 8713(2019).

    [226] A. Arbabi et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun., 6, 1(2015).

    [227] M. Khorasaninejad et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190(2016).

    [228] M. Khorasaninejad et al. Polarization-insensitive metalenses at visible wavelengths. Nano Lett., 16, 7229(2016).

    [229] W. T. Chen et al. Immersion meta-lenses at visible wavelengths for nanoscale imaging. Nano Lett., 17, 3188(2017).

    [230] W. Liu et al. Metasurface enabled wide-angle Fourier lens. Adv. Mater., 30, 1706368(2018).

    [231] M. Stalder, P. Ehbets. Electrically switchable diffractive optical element for image processing. Opt. Lett., 19, 1(1994).

    [232] Z. Sun et al. Fast-switchable, high diffraction-efficiency ferroelectric liquid crystal Fibonacci grating. Opt. Express, 29, 13978(2021).

    [233] G. A. Lester, S. J. Coulston, A. M. Strudwick. Defect-free switchable phase grating. Appl. Opt., 45, 110(2006).

    [234] G. Zhou et al. Liquid tunable diffractive/refractive hybrid lens. Opt. Lett., 34, 2793(2009).

    [235] S. G. Ghebjagh et al. Rotationally tunable multi-focal diffractive moiré lenses. Appl. Opt., 60, 5145(2021).

    [236] J. B. Sampsell. Digital micromirror device and its application to projection displays. J. Vac. Sci. Technol. B, 12, 3242(1994).

    [237] Z. Zhuang, H. P. Ho. Application of digital micromirror devices (DMD) in biomedical instruments. J. Innovative Opt. Health Sci., 13, 2030011(2020).

    [238] B. Potsaid, F. P. Finger, J. T. Wen. Automation of challenging spatial-temporal biomedical observations with the adaptive scanning optical microscope (ASOM). IEEE Trans. Autom. Sci. Eng., 6, 525(2009).

    [239] D. Vettese. Liquid crystal on silicon. Nat. Photonics, 4, 752(2010).

    [240] Y. Ni et al. Computational spectropolarimetry with a tunable liquid crystal metasurface. eLight, 2, 23(2022).

    [241] J. Xiong, S.-T. Wu. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications. eLight, 1, 3(2021).

    [242] W. Bleha, L. A. Lei. Advances in liquid crystal on silicon (LCOS) spatial light modulator technology. Proc. SPIE, 8736, 47(2013).

    [243] J. Bohn et al. Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces. Nano Lett., 18, 3461(2018).

    [244] M. Bosch et al. Electrically actuated varifocal lens based on liquid-crystal-embedded dielectric metasurfaces. Nano Lett., 21, 3849(2021).

    [245] O. Buchnev et al. Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch. Adv. Opt. Mater., 3, 674(2015).

    [246] J. Li et al. Electrically-controlled digital metasurface device for light projection displays. Nat. Commun., 11, 1(2020).

    [247] Y. Hu et al. Electrically tunable multifunctional polarization-dependent metasurfaces integrated with liquid crystals in the visible region. Nano Lett., 21, 4554(2021).

    [248] B. J. Eggleton, B. Luther-Davies, K. Richardson. Chalcogenide photonics. Nat. Photonics, 5, 141(2011).

    [249] F. Ding, Y. Yang, S. I. Bozhevolnyi. Dynamic metasurfaces using phase-change chalcogenides. Adv. Opt. Mater., 7, 1801709(2019).

    [250] Z. Sámson et al. Metamaterial electro-optic switch of nanoscale thickness. Appl. Phys. Lett., 96, 143105(2010).

    [251] B. Gholipour et al. An all-optical, non-volatile, bidirectional, phase-change meta-switch. Adv. Mater., 25, 3050(2013).

    [252] Q. Wang et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics, 10, 60(2016).

    [253] S. Lepeshov, A. Krasnok. Tunable phase-change metasurfaces. Nat. Nanotechnol., 16, 615(2021).

    [254] Y. Wang et al. Electrical tuning of phase-change antennas and metasurfaces. Nat. Nanotechnol., 16, 667(2021).

    [255] Y. Zhang et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat. Nanotechnol., 16, 661(2021).

    [256] Z. Shao et al. Recent progress in the phase-transition mechanism and modulation of vanadium dioxide materials. NPG Asia Mater., 10, 581(2018).

    [257] T. Driscoll et al. Memory metamaterials. Science, 325, 1518(2009).

    [258] O. L. Muskens et al. Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide. Light Sci. Appl., 5, e16173(2016).

    [259] A. Tripathi et al. Tunable Mie-resonant dielectric metasurfaces based on VO2 phase-transition materials. ACS Photonics, 8, 1206(2021).

    [260] X. Duan, S. Kamin, N. Liu. Dynamic plasmonic colour display. Nat. Commun., 8, 1(2017).

    [261] Y. Chen et al. Dynamic color displays using stepwise cavity resonators. Nano Lett., 17, 5555(2017).

    [262] J. Li et al. Addressable metasurfaces for dynamic holography and optical information encryption. Sci. Adv., 4, eaar6768(2018).

    [263] R. Kaissner et al. Electrochemically controlled metasurfaces with high-contrast switching at visible frequencies. Sci. Adv., 7, eabd9450(2021).

    [264] I. M. Pryce et al. Highly strained compliant optical metamaterials with large frequency tunability. Nano Lett., 10, 4222(2010).

    [265] H.-S. Ee, R. Agarwal. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett., 16, 2818(2016).

    [266] T. Kan et al. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals. Nat. Commun., 6, 1(2015).

    [267] S. Chen et al. Reconfigurable nano-kirigami metasurfaces by pneumatic pressure. Photonics Res., 8, 1177(2020).

    [268] N. I. Zheludev, E. Plum. Reconfigurable nanomechanical photonic metamaterials. Nat. Nanotechnol., 11, 16(2016).

    [269] L. Midolo, A. Schliesser, A. Fiore. Nano-opto-electro-mechanical systems. Nat. Nanotechnol., 13, 11(2018).

    [270] Z. Ren et al. Leveraging of MEMS technologies for optical metamaterials applications. Adv. Opt. Mater., 8, 1900653(2020).

    [271] J.-Y. Ou et al. Reconfigurable photonic metamaterials. Nano Lett., 11, 2142(2011).

    [272] J. Valente et al. A magneto-electro-optical effect in a plasmonic nanowire material. Nat. Commun., 6, 1(2015).

    [273] J.-Y. Ou et al. Giant nonlinearity of an optically reconfigurable plasmonic metamaterial. Adv. Mater., 28, 729(2016).

    [274] J. C. Zhang et al. A 6G meta-device for 3D varifocal. Sci. Adv., 9, eadf8478(2023).

    [275] T. Low et al. Polaritons in layered two-dimensional materials. Nat. Mater., 16, 182(2017).

    [276] P. Li et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science, 359, 892(2018).

    [277] P. Huo et al. Hyperbolic metamaterials and metasurfaces: fundamentals and applications. Adv. Opt. Mater., 7, 1801616(2019).

    [278] G. Hu et al. Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface. Nat. Photonics, 13, 467(2019).

    [279] L. Sun et al. Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array. Nat. Photonics, 13, 180(2019).

    [280] J. van de Groep et al. Exciton resonance tuning of an atomically thin lens. Nat. Photonics, 14, 426(2020).

    [281] G. Hu et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature, 582, 209(2020).

    [282] X.-R. Mao et al. Magic-angle lasers in nanostructured moiré superlattice. Nat. Nanotechnol., 16, 1099(2021).

    [283] M. Nauman et al. Tunable unidirectional nonlinear emission from transition-metal-dichalcogenide metasurfaces. Nat. Commun., 12, 1(2021).

    [284] Y. Peng et al. Computational imaging using lightweight diffractive-refractive optics. Opt. Express, 23, 31393(2015).

    [285] M. Meem, A. Majumder, R. Menon. Full-color video and still imaging using two flat lenses. Opt. Express, 26, 26866(2018).

    [286] M. Meem et al. Imaging from the visible to the longwave infrared wavelengths via an inverse-designed flat lens. Opt. Express, 29, 20715(2021).

    [287] E. Fenimore. Coded aperture imaging: the modulation transfer function for uniformly redundant arrays. Appl. Opt., 19, 2465(1980).

    [288] S. R. Gottesman, E. E. Fenimore. New family of binary arrays for coded aperture imaging. Appl. Opt., 28, 4344(1989).

    [289] K. A. Nugent. Coded aperture imaging: a Fourier space analysis. Appl. Opt., 26, 563(1987).

    [290] M. K. Kim. Adaptive optics by incoherent digital holography. Opt. Lett., 37, 2694(2012).

    [291] M. K. Kim. Incoherent digital holographic adaptive optics. Appl. Opt., 52, A117(2013).

    [292] A. Vijayakumar, J. Rosen. Interferenceless coded aperture correlation holography–a new technique for recording incoherent digital holograms without two-wave interference. Opt. Express, 25, 13883(2017).

    [293] M. R. Rai, A. Vijayakumar, J. Rosen. Single camera shot interferenceless coded aperture correlation holography. Opt. Lett., 42, 3992(2017).

    [294] A. Vijayakumar et al. Coded aperture correlation holography–a new type of incoherent digital holograms. Opt. Express, 24, 12430(2016).

    [295] M. P. Backlund et al. Removing orientation-induced localization biases in single-molecule microscopy using a broadband metasurface mask. Nat. Photonics, 10, 459(2016).

    [296] M. Mesch et al. Nonlinear plasmonic sensing. Nano Lett., 16, 3155(2016).

    [297] X. Wang et al. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat. Rev. Phys., 2, 253(2020).

    [298] Y. Wang et al. Wearable plasmonic-metasurface sensor for noninvasive and universal molecular fingerprint detection on biointerfaces. Sci. Adv., 7, eabe4553(2021).

    [299] N. I. Zheludev, G. Yuan. Optical superoscillation technologies beyond the diffraction limit. Nat. Rev. Phys., 4, 16(2021).

    [300] G. H. Yuan, N. I. Zheludev. Detecting nanometric displacements with optical ruler metrology. Science, 364, 771(2019).

    [301] M. Hentschel et al. Chiral plasmonics. Sci. Adv., 3, e1602735(2017).

    [302] J. Mun et al. Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena. Light Sci. Appl., 9, 1(2020).

    [303] M. L. Solomon et al. Nanophotonic platforms for chiral sensing and separation. Acc. Chem. Res., 53, 588(2020).

    [304] Y. Zhao, M. Belkin, A. Alù. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun., 3, 870(2012).

    [305] M. Ren et al. Giant nonlinear optical activity in a plasmonic metamaterial. Nat. Commun., 3, 1(2012).

    [306] L. Cong et al. Electrically programmable terahertz diatomic metamolecules for chiral optical control. Research, 2019, 7084251(2019).

    [307] H. Kwon, A. Faraon. NEMS-tunable dielectric chiral metasurfaces. ACS Photonics, 8, 2980(2021).

    [308] Z. Liu et al. Nano-kirigami with giant optical chirality. Sci. Adv., 4, eaat4436(2018).

    [309] A. Y. Zhu et al. Giant intrinsic chiro-optical activity in planar dielectric nanostructures. Light Sci. Appl., 7, 17158(2018).

    [310] M. V. Gorkunov, A. A. Antonov, Y. S. Kivshar. Metasurfaces with maximum chirality empowered by bound states in the continuum. Phys. Rev. Lett., 125, 093903(2020).

    [311] Y. Chen et al. Observation of intrinsic chiral bound states in the continuum. Nature, 613, 474(2023).

    [312] J. Pan, T. Zhu. 1× N fibre coupler employing diffractive optical element. Electron. Lett., 35, 324(1999).

    [313] C. Di, C. Zhou. Dynamic optical coupled system employing even-numbered Dammann gratings. Appl. Opt., 45, 1993(2006).

    [314] G. Roelkens et al. High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit. Appl. Phys. Lett., 92, 131101(2008).

    [315] S. Karpeev et al. Mode multiplexing by diffractive optical elements in optical telecommunication. Proc. SPIE, 5480, 153(2004).

    [316] M. Lo et al. Non-periodic diffractive phase element for wavelength-division (de) multiplexing. Opt. Commun., 173, 217(2000).

    [317] S. Shwartz, M. A. Golub, S. Ruschin. Computer-generated holograms for fiber optical communication with spatial-division multiplexing. Appl. Opt., 56, A31(2017).

    [318] S. Shwartz, M. Golub, S. Ruschin. Diffractive optical elements for mode-division multiplexing of temporal signals with the aid of Laguerre–Gaussian modes. Appl. Opt., 52, 2659(2013).

    [319] S. Shwartz, M. A. Golub, S. Ruschin. Generating function approach for creation of coherent multimode beams by diffractive optics. J. Mod. Opt., 59, 83(2012).

    [320] M. Onoda, S. Murakami, N. Nagaosa. Hall effect of light. Phys. Rev. Lett., 93, 083901(2004).

    [321] K. Y. Bliokh, Y. P. Bliokh. Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet. Phys. Rev. Lett., 96, 073903(2006).

    [322] X. Yin et al. Photonic spin Hall effect at metasurfaces. Science, 339, 1405(2013).

    [323] J. Lin et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science, 340, 331(2013).

    [324] X. Ling et al. Recent advances in the spin Hall effect of light. Rep. Prog. Phys., 80, 066401(2017).

    [325] W. Luo et al. Photonic spin Hall effect with nearly 100% efficiency. Adv. Opt. Mater., 3, 1102(2015).

    [326] W. Luo et al. Transmissive ultrathin Pancharatnam-Berry metasurfaces with nearly 100% efficiency. Phys. Rev. Appl, 7, 044033(2017).

    [327] J. Duan et al. High-efficiency chirality-modulated spoof surface plasmon meta-coupler. Sci. Rep., 7, 1354(2017).

    [328] L. Du et al. On-chip photonic spin Hall lens. ACS Photonics, 6, 1840(2019).

    [329] F. Feng et al. On-chip plasmonic spin-Hall nanograting for simultaneously detecting phase and polarization singularities. Light Sci. Appl., 9, 1(2020).

    [330] T. Lei et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light Sci. Appl., 4, e257(2015).

    [331] Z. Xie et al. Ultra-broadband on-chip twisted light emitter for optical communications. Light Sci. Appl., 7, 18001(2018).

    [332] J. Fang et al. Spin-dependent optical geometric transformation for cylindrical vector beam multiplexing communication. ACS Photonics, 5, 3478(2018).

    [333] S. Chen et al. Cylindrical vector beam multiplexer/demultiplexer using off-axis polarization control. Light Sci. Appl., 10, 1(2021).

    [334] Y. Meng et al. Versatile on-chip light coupling and (de) multiplexing from arbitrary polarizations to controlled waveguide modes using an integrated dielectric metasurface. Photonics Res., 8, 564(2020).

    [335] Y. Xie et al. High-speed Stokes vector receiver enabled by a spin-dependent optical grating. Photonics Res., 9, 1470(2021).

    [336] Y. Meng et al. Optical meta-waveguides for integrated photonics and beyond. Light Sci. Appl., 10, 1(2021).

    [337] T. J. Cui et al. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl., 3, e218(2014).

    [338] L. Zhang, T. J. Cui. Space-time-coding digital metasurfaces: principles and applications. Research, 2021, 9802673(2021).

    [339] L. Zhang et al. Space-time-coding digital metasurfaces. Nat. Commun., 9, 1(2018).

    [340] Q. W. Lin et al. Coding metasurfaces with reconfiguration capabilities based on optical activation of phase-change materials for terahertz beam manipulations. Adv. Opt. Mater., 10, 2101699(2022).

    [341] G. Fan, K. Pennington, J. Greiner. Magneto-optic hologram. J. Appl. Phys., 40, 974(1969).

    [342] R. Mezrich. Curie-point writing of magnetic holograms on MnBi. Appl. Phys. Lett., 14, 132(1969).

    [343] R. Mezrich. Reconstruction effects in magnetic holography. IEEE Trans. Magn., 6, 537(1970).

    [344] H. Haskal. Polarization and efficiency in magnetic holography. IEEE Trans. Magn., 6, 542(1970).

    [345] Y. Nakamura. Magnetic holography and its application to data storage. Photonics, 8, 187(2021).

    [346] Y. Nakamura et al. Magnetic volumetric hologram memory with magnetic garnet. Opt. Express, 22, 16439(2014).

    [347] C. Gu et al. Cross-talk-limited storage capacity of volume holographic memory. J. Opt. Soc. Am. A, 9, 1978(1992).

    [348] H.-Y. S. Li, D. Psaltis. Three-dimensional holographic disks. Appl. Opt., 33, 3764(1994).

    [349] F. H. Mok. Angle-multiplexed storage of 5000 holograms in lithium niobate. Opt. Lett., 18, 915(1993).

    [350] J. Rosen, M. Segev, A. Yariv. Wavelength-multiplexed computer-generated volume holography. Opt. Lett., 18, 744(1993).

    [351] A. Kewitsch et al. Electric-field multiplexing/demultiplexing of volume holograms in photorefractive media. Opt. Lett., 18, 534(1993).

    [352] C. Denz et al. Parallel optical image addition and subtraction in a dynamic photorefractive memory by phase-code multiplexing. Opt. Lett., 21, 278(1996).

    [353] H. Wei et al. Orthogonal polarization dual-channel holographic memory in cationic ring-opening photopolymer. Opt. Express, 14, 5135(2006).

    [354] A. Turukhin et al. Spectral hole burning in naphthalocyanines derivatives in the region 800 nm for holographic storage applications. J. Lumin., 86, 399(2000).

    [355] M. R. Taghizadeh et al. Developing diffractive optics for optical computing. IEEE Micro, 14, 10(1994).

    [356] M. J. Murdocca et al. Optical design of programmable logic arrays. Appl. Opt., 27, 1651(1988).

    [357] N. Streibl. Beam shaping with optical array generators. J. Mod. Opt., 36, 1559(1989).

    [358] J. R. Leger, G. J. Swanson. Efficient array illuminator using binary-optics phase plates at fractional-Talbot planes. Opt. Lett., 15, 288(1990).

    [359] M. Bernhardt, F. Wyrowski, O. Bryngdahl. Iterative techniques to integrate different optical functions in a diffractive phase element. Appl. Opt., 30, 4629(1991).

    [360] M. R. Feldman, C. C. Guest. Iterative encoding of high-efficiency holograms for generation of spot arrays. Opt. Lett., 14, 479(1989).

    [361] J. D. Stack, M. R. Feldman. Recursive mean-squared-error algorithm for iterative discrete on-axis encoded holograms. Appl. Opt., 31, 4839(1992).

    [362] K. S. Urquhart et al. Diffractive optics applied to free-space optical interconnects. Appl. Opt., 33, 3670(1994).

    [363] D. Zaleta et al. Design methods for space-variant optical interconnections to achieve optimum power throughput. Appl. Opt., 34, 2436(1995).

    [364] B. Bianco, T. Tommasi. Space-variant optical interconnection through the use of computer-generated holograms. Appl. Opt., 34, 7573(1995).

    [365] C.-C. Huang, B. K. Jenkins, C. B. Kuznia. Space-variant interconnections based on diffractive optical elements for neural networks: architectures and cross-talk reduction. Appl. Opt., 37, 889(1998).

    [366] J. Jahns, A. Huang. Planar integration of free-space optical components. Appl. Opt., 28, 1602(1989).

    [367] K. Chhabra, D. Gupta, O. Arora. Flip chip bonding. IETE J. Res., 21, 292(1975).

    [368] J. Hardy, J. Shamir. Optics inspired logic architecture. Opt. Express, 15, 150(2007).

    [369] Z. Ying et al. Automated logic synthesis for electro-optic logic-based integrated optical computing. Opt. Express, 26, 28002(2018).

    [370] M. L. Hines, N. T. Carnevale. The NEURON simulation environment. Neural Comput., 9, 1179(1997).

    [371] H. Markram. The blue brain project. Nat. Rev. Neurosci., 7, 153(2006).

    [372] X. Lin et al. All-optical machine learning using diffractive deep neural networks. Science, 361, 1004(2018).

    [373] J. Geng. Three-dimensional display technologies. Adv. Opt. Photonics, 5, 456(2013).

    [374] A. M. Sánchez, L. M. Giraldo, D. V. Prieto. Monocolor and color holography of pre-Hispanic Colombian goldwork: a way of Colombian heritage appropriation. Proc. SPIE, 10558, 1055803(2018).

    [375] S. Tay et al. An updatable holographic three-dimensional display. Nature, 451, 694(2008).

    [376] D. E. Smalley et al. Anisotropic leaky-mode modulator for holographic video displays. Nature, 498, 313(2013).

    [377] P. S. Hilaire, S. A. Benton, M. Lucente. Synthetic aperture holography: a novel approach to three-dimensional displays. J. Opt. Soc. Am. A, 9, 1969(1992).

    [378] Y.-Z. Liu et al. High-speed full analytical holographic computations for true-life scenes. Opt. Express, 18, 3345(2010).

    [379] H. Zhang, Q. Tan, G. Jin. Holographic display system of a three-dimensional image with distortion-free magnification and zero-order elimination. Opt. Eng., 51, 075801(2012).

    [380] G. F. Jin et al. Computer-Generated Holography, 92(2020).

    [381] M. E. Lucente. Interactive computation of holograms using a look-up table. J. Electron. Imaging, 2, 28(1993).

    [382] S. Nishi et al. Fast calculation of computer-generated Fresnel hologram utilizing distributed parallel processing and array operation. Opt. Rev., 12, 287(2005).

    [383] L. Ahrenberg et al. Computer generated holography using parallel commodity graphics hardware. Opt. Express, 14, 7636(2006).

    [384] J.-S. Chen, D. Chu, Q. Smithwick. Rapid hologram generation utilizing layer-based approach and graphic rendering for realistic three-dimensional image reconstruction by angular tiling. J. Electron. Imaging, 23, 023016(2014).

    [385] Y. Zhao et al. Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method. Opt. Express, 23, 25440(2015).

    [386] H. Zhang, L. Cao, G. Jin. Computer-generated hologram with occlusion effect using layer-based processing. Appl. Opt., 56, F138(2017).

    [387] L. Shi et al. Towards real-time photorealistic 3D holography with deep neural networks. Nature, 591, 234(2021).

    [388] J. Wu et al. High-speed computer-generated holography using an autoencoder-based deep neural network. Opt. Lett., 46, 2908(2021).

    [389] M. Stanley et al. 3D electronic holography display system using a 100 mega-pixel spatial light modulator. Proc. SPIE, 5249, 297(2004).

    [390] J. Hahn et al. Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators. Opt. Express, 16, 12372(2008).

    [391] Z. M. A. Lum et al. Increasing pixel count of holograms for three-dimensional holographic display by optical scan-tiling. Opt. Eng., 52, 015802(2013).

    [392] S.-B. Ko, J.-H. Park. Speckle reduction using angular spectrum interleaving for triangular mesh based computer generated hologram. Opt. Express, 25, 29788(2017).

    [393] H. Kim et al. Continuous viewing window formation for 360-degree holographic display(2017).

    [394] Y.-Z. Liu et al. Viewing-angle enlargement in holographic augmented reality using time division and spatial tiling. Opt. Express, 21, 12068(2013).

    [395] J. Cowan. The surface ace plasmon resonance effect in holography. Opt. Commun., 5, 69(1972).

    [396] M. Ozaki, J. Kato, S. Kawata. Surface-plasmon holography with white-light illumination. Science, 332, 218(2011).

    [397] L. Huang et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun., 4, 2808(2013).

    [398] L. Huang et al. Broadband hybrid holographic multiplexing with geometric metasurfaces. Adv. Mater., 27, 6444(2015).

    [399] G.-Y. Lee et al. Complete amplitude and phase control of light using broadband holographic metasurfaces. Nanoscale, 10, 4237(2018).

    [400] Z.-L. Deng et al. Diatomic metasurface for vectorial holography. Nano Lett., 18, 2885(2018).

    [401] Z. B. Fan, Y. F. Cheng, Z. M. Chen. Integral imaging near-eye 3D display using a nanoimprint metalens array. eLight(2023).

    [402] L. Denis et al. Inline hologram reconstruction with sparsity constraints. Opt. Lett., 34, 3475(2009).

    [403] A. Greenbaum et al. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy. Sci. Rep., 3, 1(2013).

    [404] G. Zheng, R. Horstmeyer, C. Yang. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics, 7, 739(2013).

    [405] M. G. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc., 198, 82(2000).

    [406] J. Li et al. Orthogonal-reference-pattern-modulated shift multiplexing for collinear holographic data storage. Opt. Lett., 37, 936(2012).

    [407] H. J. Coufal, D. Psaltis, G. T. Sincerbox. Holographic Data Storage, 8(2000).

    [408] H. Zhang et al. An optical neural chip for implementing complex-valued neural network. Nat. Commun., 12, 1(2021).

    [409] M. Miscuglio et al. All-optical nonlinear activation function for photonic neural networks. Opt. Mater. Express, 8, 3851(2018).

    [410] Z. He et al. Frequency-based optimized random phase for computer-generated holographic display. Appl. Opt., 60, A145(2021).

    [411] R. Li, L. Cao. Progress in phase calibration for liquid crystal spatial light modulators. Appl. Sci., 9, 2012(2019).

    [412] R. Li, Y. Gao, L. Cao. In situ calibration for a phase-only spatial light modulator based on digital holography. Opt. Eng., 59, 053101(2020).

    [413] S. Jia et al. Subwavelength beam shaping via multiple-metal slits surrounded by slot waveguides. Opt. Commun., 285, 5486(2012).

    [414] M. Ossiander et al. Extreme ultraviolet metalens by vacuum guiding. Science, 380, 59(2023).

    [415] D. L. Sounas, A. Alu. Non-reciprocal photonics based on time modulation. Nat. Photonics, 11, 774(2017).

    [416] K. Koshelev, A. Bogdanov, Y. Kivshar. Meta-optics and bound states in the continuum. Sci. Bull., 64, 836(2019).

    [417] L. Lu, J. D. Joannopoulos, M. Soljačić. Topological photonics. Nat. Photonics, 8, 821(2014).

    [418] T. Ozawa et al. Topological photonics. Rev. Mod. Phys., 91, 015006(2019).

    [419] A. B. Khanikaev, G. Shvets. Two-dimensional topological photonics. Nat. Photonics, 11, 763(2017).

    [420] W. Ma et al. Deep learning for the design of photonic structures. Nat. Photonics, 15, 77(2021).

    [421] D. Hu et al. Laser-splashed three-dimensional plasmonic nanovolcanoes for steganography in angular anisotropy. ACS Nano, 12, 9233(2018).

    [422] A. S. Solntsev, G. S. Agarwal, Y. S. Kivshar. Metasurfaces for quantum photonics. Nat. Photonics, 15, 327(2021).

    [423] T. Stav et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science, 361, 1101(2018).

    [424] L. Li et al. Metalens-array–based high-dimensional and multiphoton quantum source. Science, 368, 1487(2020).

    [425] F. D. M. Haldane, S. Raghu. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett., 100, 013904(2008).

    [426] Z. Wang et al. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature, 461, 772(2009).

    [427] G. J. Tang et al. Topological photonic crystals: physics, designs, and applications. Laser Photonics Rev., 16, 2100300(2022).

    [428] J.-W. Dong et al. Valley photonic crystals for control of spin and topology. Nat. Mater., 16, 298(2017).

    [429] X.-T. He et al. A silicon-on-insulator slab for topological valley transport. Nat. Commun., 10, 872(2019).

    [430] D. Smirnova et al. Third-harmonic generation in photonic topological metasurfaces. Phys. Rev. Lett., 123, 103901(2019).

    [431] Q. Song et al. Plasmonic topological metasurface by encircling an exceptional point. Science, 373, 1133(2021).

    [432] A. Zdagkas et al. Observation of toroidal pulses of light. Nat. Photonics, 16, 523(2022).

    [433] S. Tsesses et al. Optical skyrmion lattice in evanescent electromagnetic fields. Science, 361, 993(2018).

    [434] L. Du et al. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys., 15, 650(2019).

    Qiang Zhang, Zehao He, Zhenwei Xie, Qiaofeng Tan, Yunlong Sheng, Guofan Jin, Liangcai Cao, Xiaocong Yuan. Diffractive optical elements 75 years on: from micro-optics to metasurfaces[J]. Photonics Insights, 2023, 2(4): R09
    Download Citation