• Chinese Journal of Lasers
  • Vol. 51, Issue 7, 0701010 (2024)
Xiaoran Li1、2, Hetao Tang1、2, Jiaoling Zhao2、*, and Fenghua Li2
Author Affiliations
  • 1School of Microelectronics, Shanghai University, Shanghai 200072, China
  • 2Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    DOI: 10.3788/CJL231495 Cite this Article Set citation alerts
    Xiaoran Li, Hetao Tang, Jiaoling Zhao, Fenghua Li. Research Progress of Beyond Extreme Ultraviolet Multilayers at 6.X nm[J]. Chinese Journal of Lasers, 2024, 51(7): 0701010 Copy Citation Text show less
    References

    [1] Chua G S, Tay C J, Quan C G et al. Improvement of Rayleigh criterion with duty ratio characterization for subwavelength lithography[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 22, 801-808(2004).

    [2] Lou Q H, Yuan Z J, Zhang H B. History and present situation of lithography[J]. Science, 69, 32-36(2017).

    [3] Tallents G, Wagenaars E, Pert G. Lithography at EUV wavelengths[J]. Nature Photonics, 4, 809-811(2010).

    [5] Uzoma P C, Shabbir S, Hu H et al. Multilayer reflective coatings for BEUV lithography: a review[J]. Nanomaterials, 11, 2782(2021).

    [6] Koshelev K, Krivtsun V, Gayasov R. Experimental study of laser produced gadolinium plasma emitting at 6.7 nm[C](2010).

    [7] Kuznetsov D S, Yakshin A E, Sturm J M et al. High-reflectance La/B-based multilayer mirror for 6.x nm wavelength[J]. Optics Letters, 40, 3778-3781(2015).

    [8] Spiller E. Low-loss reflection coatings using absorbing materials[J]. Applied Physics Letters, 20, 365-367(1972).

    [9] Lin N, Yang W H, Chen Y Y et al. Research progress and development trend of extreme ultraviolet lithography source[J]. Laser & Optoelectronics Progress, 59, 0922002(2022).

    [10] Wu Q, Li Y L, Liu X H. Development and future outlook of modern lithography machines[J]. Micro/Nano Electronics and Intelligent Manufacturing, 4, 30-56(2022).

    [11] Brandt D C, Fomenkov I V, Graham M. Performance and availability of EUV sources in high volume manufacturing on multiple nodes in the field and advances in source power[J]. Proceedings of SPIE, 11854, 118540J(2021).

    [12] Guo X D, Yang G Q, Li Y. Development of extreme ultraviolet photoresists[J]. Laser & Optoelectronics Progress, 59, 0922004(2022).

    [13] Mojarad N, Gobrecht J, Ekinci Y. Interference lithography at EUV and soft X-ray wavelengths: principles, methods, and applications[J]. Microelectronic Engineering, 143, 55-63(2015).

    [14] Mojarad N, Gobrecht J, Ekinci Y. Beyond EUV lithography: a comparative study of efficient photoresists’ performance[J]. Scientific Reports, 5, 9235(2015).

    [15] Tang C X, Deng X J. Steady-state micro-bunching accelerator light source[J]. Acta Physica Sinica, 71, 152901(2022).

    [16] Endo A. Extendibility evaluation of industrial EUV source technologies for kW average power and 6.x nm wavelength operation[J]. Journal of Modern Physics, 5, 285-295(2014).

    [17] Wang W T, Feng K, Ke L T et al. Free-electron lasing at 27 nanometres based on a laser Wakefield accelerator[J]. Nature, 595, 516-520(2021).

    [18] Tian Y, Liu J S, Bai Y F et al. Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation[J]. Nature Photonics, 11, 242-246(2017).

    [19] Seddon E A, Clarke J A, Dunning D J et al. Short-wavelength free-electron laser sources and science: a review[J]. Reports on Progress in Physics, 80, 115901(2017).

    [20] Huang N S, Deng H X, Liu B et al. Features and futures of X-ray free-electron lasers[J]. The Innovation, 2, 100097(2021).

    [21] Rönsch-Schulenburg J, Honkavaara K, Schreiber S et al. FLASH-status and upgrades[C], WEOA02(2019).

    [22] Tanaka T. Proposal to generate an isolated monocycle X-ray pulse by counteracting the slippage effect in free-electron lasers[J]. Physical Review Letters, 114, 044801(2015).

    [23] Wolff-Fabris F, Viehweger M, Li Y H et al. High accuracy measurements of magnetic field integrals for the European XFEL undulator systems[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 833, 54-60(2016).

    [24] Mainfray G, Manus G. Multiphoton ionization of atoms[J]. Reports on Progress in Physics, 54, 1333-1372(1991).

    [25] Yin L, Wang H C, Reagan B A et al. 6.7-nm emission from Gd and Tb plasmas over a broad range of irradiation parameters using a single laser[J]. Physical Review Applied, 6, 034009(2016).

    [26] von Wezyk A, Andrianov K, Wilhein T et al. Target materials for efficient plasma-based extreme ultraviolet sources in the range of 6 to 8 nm[J]. Journal of Physics D: Applied Physics, 52, 505202(2019).

    [27] Wang J W, Wang X B, Zuo D L et al. Characteristics of discharge and beyond extreme ultraviolet spectra of laser induced discharge gadolinium plasma[J]. Optics Laser Technology, 138, 106904(2021).

    [28] Fujimoto J, Abe T, Tanaka S et al. Laser-produced plasma-based extreme-ultraviolet light source technology for high-volume manufacturing extreme-ultraviolet lithography[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 11, 021111(2012).

    [29] Zong N, Hu W M, Wang Z M et al. Research progress on laser-produced plasma light source for 13.5 nm extreme ultraviolet lithography[J]. Chinese Optics, 13, 28-42(2020).

    [30] Wurm S, Kemp K. SEMATECH pushes extreme UV lithography forward[N/OL]. SPIE Newsroom, 2006-04-11. https:∥www.spie.org/news/0079-sematech-pushes-extreme-uv-lithography-forward

    [31] Louis E, Yakshin A E, Goerts P C et al. Progress in Mo/Si multilayer coating technology for EUVL optics[J]. Proceedings of SPIE, 3997, 406-411(2000).

    [32] Kittel C[M]. Introduction to solid state physics, 25-26(1971).

    [33] Montcalm C, Kearney P A, Slaughter J M et al. Survey of Ti-, B-, and Y-based soft X-ray-extreme ultraviolet multilayer mirrors for the 2- to 12-nm wavelength region[J]. Applied Optics, 35, 5134-5147(1996).

    [34] Dellasega D, Russo V, Pezzoli A et al. Boron films produced by high energy Pulsed Laser Deposition[J]. Materials & Design, 134, 35-43(2017).

    [35] Barthelmess M, Bajt S. Thermal and stress studies of normal incidence Mo/B4C multilayers for a 6.7 nm wavelength[J]. Applied Optics, 50, 1610-1619(2011).

    [36] Naujok P, Yulin S, Bianco A et al. La/B4C multilayer mirrors with an additional wavelength suppression[J]. Optics Express, 23, 4289-4295(2015).

    [37] Morawe C, Supruangnet R, Peffen J C. Structural modifications in Pd/B4C multilayers for X-ray optical applications[J]. Thin Solid Films, 588, 1-10(2015).

    [39] Barbee T W, Jr. Multilayers for X-ray optics[J]. Optical Engineering, 25, 893-915(1986).

    [40] Penkov O V, Kopylets I A, Kondratenko V V et al. Synthesis and structural analysis of Mo/B periodical multilayer X-ray mirrors for beyond extreme ultraviolet optics[J]. Materials & Design, 198, 109318(2021).

    [41] Kearney P A, Moore C E, Tan S I et al. Mask blanks for extreme ultraviolet lithography: ion beam sputter deposition of low defect density Mo/Si multilayers[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 15, 2452-2454(1997).

    [42] Spiller E, Baker S L, Mirkarimi P B et al. High-performance Mo-Si multilayer coatings for extreme-ultraviolet lithography by ion-beam deposition[J]. Applied Optics, 42, 4049-4058(2003).

    [43] Paret V, Boher P, Geyl R et al. Characterization of optics and masks for the EUV lithography[J]. Microelectronic Engineering, 61/62, 145-155(2002).

    [44] Yu B. Structural characterization of Mo/Si multilayer by grazing incidence X-ray diffraction[J]. Chinese Journal of Optics and Applied Optics, 3, 623-629(2010).

    [45] Jiang H, Michette A, Pfauntsch S et al. Determination of the evolution of layer thickness errors and interfacial imperfections in ultrathin sputtered Cr/C multilayers using high-resolution transmission electron microscopy[J]. Optics Express, 19, 11815-11824(2011).

    [46] Yu B. Study on the thickness gradient control and anti-thermal damage for EUV multilayers[D], 38-39(2016).

    [47] Xie C, Yao Q X, Yu Y et al. Control and data acquisition system for VUV-EUV reflectometer[J]. Optical Instruments, 42, 71-80(2020).

    [48] Miyake A, Miyachi T, Amemiya M et al. LPP-based reflectometer for characterization of EUV lithography systems[J]. Proceedings of SPIE, 5037, 647-655(2003).

    [49] Gullikson E M, Mrowka S, Kaufmann B B. Recent developments in EUV reflectometry at the Advanced Light Source[J]. Proceedings of SPIE, 4343, 363-373(2001).

    [50] Zhu J T, Ji B, Jiang H et al. Interface study of Sc/Si multilayers[J]. Applied Surface Science, 515, 146066(2020).

    [51] Voronov D L, Zubarev E N, Kondratenko V V et al. Study of fast diffusion species in Sc/Si multilayers by W-based marker analysis[J]. Thin Solid Films, 513, 152-158(2006).

    [52] Yuan Y Y, Le Guen K, Mény C et al. Evolution of interfacial structure of Co-based periodic multilayers upon annealing[J]. Surface and Coatings Technology, 352, 508-512(2018).

    [53] Andreev S S, Barysheva M M, Chkhalo N I et al. Multilayer X-ray mirrors based on La/B4C and La/B9C[J]. Technical Physics, 55, 1168-1174(2010).

    [54] Chkhalo N I, Künstner S, Polkovnikov V N et al. High performance La/B4C multilayer mirrors with barrier layers for the next generation lithography[J]. Applied Physics Letters, 102, 011602(2013).

    [55] Drozdov M N, Drozdov Y N, Chkhalo N I et al. The role of ultra-thin carbon barrier layers for fabrication of La/B4C interferential mirrors: study by time-of-flight secondary ion mass spectrometry and high-resolution transmission electron microscopy[J]. Thin Solid Films, 577, 11-16(2015).

    [56] Tsarfati T, van de Kruijs R W E, Zoethout E et al. Nitridation and contrast of B4C/La interfaces and X-ray multilayer optics[J]. Thin Solid Films, 518, 7249-7252(2010).

    [57] Makhotkin I A, Zoethout E, van de Kruijs R et al. Short period La/B and LaN/B multilayer mirrors for ~6.8 nm wavelength[J]. Optics Express, 21, 29894-29904(2013).

    [58] Rao P N, Rai S K, Nayak M et al. Stability and normal incidence reflectivity of W/B4C multilayer mirror near the boron K absorption edge[J]. Applied Optics, 52, 6126-6130(2013).

    [59] Naujok P, Yulin S, Müller R et al. Interface characterization in B-based multilayer mirrors for next generation lithography[J]. Thin Solid Films, 612, 414-418(2016).

    [60] Zhu J T, Ji B, Zhu J et al. Studies on the stress and thermal properties of Mo/B4C and MoxC1-x/B4C multilayers[J]. Materials Research Express, 7, 036403(2020).

    [61] Fujimoto U, Harada T, Yamakawa S et al. Carbon/boron multilayer for beyond EUV lithography[J]. Proceedings of SPIE, 12915, 129150M(2023).

    [62] Mertens B, Weiss M, Meiling H et al. Progress in EUV optics lifetime expectations[J]. Microelectronic Engineering, 73/74, 16-22(2004).

    [63] Meiling H, Banine V, Kuerz P et al. The EUV program at ASML: an update[J]. Proceedings of SPIE, 5037, 24-35(2003).

    [64] Nyabero S L, van de Kruijs R W E, Yakshin A E et al. Diffusion-induced structural changes in La/B-based multilayers for 6.7-nm radiation[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 13, 013014(2014).

    [65] Naujok P, Murray K, Yulin S et al. Thermal stability of B-based multilayer mirrors for next generation lithography[J]. Thin Solid Films, 642, 252-257(2017).

    [66] Bajt S, Chapman H N, Nguyen N et al. Design and performance of capping layers for extreme-ultraviolet multilayer mirrors[J]. Applied Optics, 42, 5750-5758(2003).

    [67] Bajt S, Dai Z R, Nelson E J et al. Oxidation resistance of Ru-capped EUV multilayers[J]. Proceedings of SPIE, 5751, 118-127(2005).

    [68] Kuznetsov D S, Yakshin A E, Sturm J M et al. Grazing-incidence La/B-based multilayer mirrors for 6. x nm wavelength[J]. Journal of Nanoscience and Nanotechnology, 19, 585-592(2019).

    [69] Krause B, Kuznetsov D S, Yakshin A E et al. In situ and real-time monitoring of structure formation during non-reactive sputter deposition of lanthanum and reactive sputter deposition of lanthanum nitride[J]. Journal of Applied Crystallography, 51, 1013-1020(2018).

    [70] Boller K, Haelbich R P, Hogrefe H et al. Investigation of carbon contamination of mirror surfaces exposed to synchrotron radiation[J]. Nuclear Instruments and Methods in Physics Research, 208, 273-279(1983).

    [71] Madey T E, Faradzhev N S, Yakshinskiy B V et al. Surface phenomena related to mirror degradation in extreme ultraviolet (EUV) lithography[J]. Applied Surface Science, 253, 1691-1708(2006).

    [72] Yakshinskiy B V, Wasielewski R, Loginova E et al. DIET processes on ruthenium surfaces related to extreme ultraviolet lithography (EUVL)[J]. Surface Science, 602, 3220-3224(2008).

    [73] Graham S, Jr, Steinhaus C A, Clift W M et al. Atomic hydrogen cleaning of EUV multilayer optics[J]. Proceedings of SPIE, 5037, 460-469(2003).

    [74] Li W B, Pan L Y, Wang C L et al. Multi-shot damage on Mo/Si multilayer induced by nanosecond EUV radiation[J]. AIP Advances, 11, 015201(2021).

    [75] Xie W L, Wu X B, Wang K B et al. Effect of EUV source parameters on focused beam performance of EUV radiation-damage-test system[J]. Chinese Journal of Lasers, 47, 0601004(2020).

    [76] Chalupský J, Hájková V, Altapova V et al. Damage of amorphous carbon induced by soft X-ray femtosecond pulses above and below the critical angle[J]. Applied Physics Letters, 95, 031111(2009).

    [77] Zhang L C. Progress in EUV multilayer coating technologies[J]. Chinese Journal of Optics and Applied Optics, 3, 554-565(2010).

    Xiaoran Li, Hetao Tang, Jiaoling Zhao, Fenghua Li. Research Progress of Beyond Extreme Ultraviolet Multilayers at 6.X nm[J]. Chinese Journal of Lasers, 2024, 51(7): 0701010
    Download Citation