• Infrared and Laser Engineering
  • Vol. 45, Issue 9, 902001 (2016)
Zhao Yuan1, Zhang Zijing1, Ma Kun1, Xu Lu1, Lv Hua2, and Su Jianzhong2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla201645.0902001 Cite this Article
    Zhao Yuan, Zhang Zijing, Ma Kun, Xu Lu, Lv Hua, Su Jianzhong. High sensitivity photon polarization laser radar system[J]. Infrared and Laser Engineering, 2016, 45(9): 902001 Copy Citation Text show less
    References

    [1] Schildknecht T, Musci R, Ploner M, et al. Optical observation of space debris in the geostationary ring[C]//Space Debris, 2001, 473: 89-93.

    [2] Schildknecht T, Musci R, Ploner M, et al. Optical observations of space debris in GEO and in highly-eccentric orbits[J]. Advances in Space Research, 2004, 34(5): 901-911.

    [3] Kirchner G, Koidl F, Friederich F, et al. Laser measurements to space debris from Graz SLR station[J]. Advances in Space Research, 2013, 51(1): 21-24.

    [4] Wang Weibing, Wang Tingfeng, Guo Jin. Research on orbit determination technology for space target based on method of tracking with double satellites and double cameras[J]. Acta Optica Sinica, 2014, 35(1): 112006. (in Chinese)

    [5] Jiang Tiezhen, Xiao Wenshu, Li Dasheng, et al. Feasibility study on passive-radar detection of space targets using spaceborne illuminators of opportunity[J]. Journal of Radars, 2014, 3(6): 711-719. (in Chinese)

    [6] Zhu Jiang, Liao Guisheng, Zhu Shengqi. Space group debris imaging based on block-sparse method[J]. Journal of Electronics & Information Technology, 2015, 37(3): 587-593. (in Chinese)

    [7] Li Yuqiang, Li Rongwang, Li Zhulian, et al. Application research on space debris laser ranging[J]. Infrared and Laser Engineering, 2015, 44(11): 3324-3329. (in Chinese)

    [8] Prochazka I, Kodet J, Blazej J, et al. Photon counting detector for space debris laser tracking and lunar laser ranging[J]. Advances in Space Research, 2014, 54(4): 755-758.

    [9] DaneshPanah M, Javidi B, Watson E A. Three dimensional object recognition with photon countingimagery in the presence of noise[J]. Opt Express, 2010, 18(25): 26450-26460.

    [10] Aull B F, Loomis A H, Young D J, et al. Geigermode avalanche photodiodes for three-dimensional imaging[J]. Lincoln Lab J, 2002, 13(2): 335-350.

    [11] Krichel N J, McCarthy A, Buller G S. Resolving range ambiguity in a photon counting depth imageroperating at kilometer distances[J]. Opt Express, 2010, 18(9): 9192-9206.

    [12] Massa J S, Wallace A M, Buller G S, et al. Laser depth measurement based ontime-correlated single-photon counting[J]. Opt Lett, 1997, 22(8): 543-545.

    [13] Yuan P, Sudharsanan R, Bai X G, et al. 32×32 Geiger-mode LADAR cameras[C]//SPIE, 2010, 7684: 76840C.

    [14] Fouche D G. Detection and false-alarm probabilities for laser radars that use Geiger-mode detectors[J]. Applied Optics, 2003, 42(27): 5388-5398.

    [15] Hayman M, Thayer J P. General description of polarization in lidar using Stokes vectors and polar decomposition of Mueller matrices[J]. JOSA A, 2012, 29(4): 400-409.

    CLP Journals

    [1] Wang Haiwei, Ding Yuxing, Huang Genghua, Hou Jia, Shu Rong. Research on the long-range and compact photon counting ladar system under sunlight condition[J]. Infrared and Laser Engineering, 2019, 48(1): 106005

    [2] Tian Jing, Bai Guangfu, Jiang Yang. Research of scattering Stokes parameters for ship wake bubbles[J]. Infrared and Laser Engineering, 2018, 47(2): 206003

    Zhao Yuan, Zhang Zijing, Ma Kun, Xu Lu, Lv Hua, Su Jianzhong. High sensitivity photon polarization laser radar system[J]. Infrared and Laser Engineering, 2016, 45(9): 902001
    Download Citation